王公仆

博士、教授、博士生导师

基本信息

办公电话:010-51688536 电子邮件: gpwang@bjtu.edu.cn
通讯地址:北京交通大学主校区九教北201房间 邮编:100044

教育背景

王公仆,北京交通大学教授,博士生导师。

1980年出生于安徽省岳西县。2001年于安徽大学获得学士学位,2004年于北京邮电大学获得硕士学位,2011年于加拿大阿尔伯塔大学获得博士学位,博士导师:Prof. Chintha Tellambura (IEEE Fellow) http://www.ece.ualberta.ca/~chintha/

现担任北京交通大学信息通信网络研究所(http://icn.bjtu.edu.cn/)副所长中国通信学会高级会员,曾任青年工作委员会委员。

研究领域为移动互联网、信号处理以及人工智能。当前研究聚焦于物联网反向散射技术估计检测理论,高铁无线通信网络物理层技术,以及机器学习基础理论与应用(如利用神经网络和强化学习理论来解决无线信号估计检测问题,数据驱动的估计和检测算法设计)。发表IEEE期刊和会议论文百余篇,在IEEE TWC, IEEE TCOM,IEEE JSAC,IEEE Wireless Communication Magazine等A1A2区SCI杂志发表论文三十多篇, 含ESI高被引五篇,论文总引用六千余次,SCI他两千余次。

获得ACM MoMM、IEEE WCSP、IET ICT等国际会议最佳论文奖。

获得中国通信学会自然科学二等奖(2018)和一等奖(2021)。

主持国家自然科学基金项目青年项目一项、面上项目两项、联合重点项目一项,产学研项目多项。


工作经历

2004-2007,北京邮电大学网络教育学院,助教至讲师。

2012-2013,借调中国科技部基础研究管理中心,担任中国973计划信息领域联络员及国家重大科学研究计划量子调控领域联络员。

2013-2018,北京交通大学计算机与信息技术学院,副教授,博士生导师。

2018-今,北京交通大学计算机与信息技术学院,教授,博士生导师。

合作单位和导师:

1. 加拿大阿尔伯塔大学Prof. Chintha Tellambura (IEEE Fellow) http://www.ece.ualberta.ca/~chintha/

2. 中国清华大学高飞飞教授 (IEEE Fellow) http://www.au.tsinghua.edu.cn/info/1094/1518.htm

3. 北京交通大学国家重点实验室首席教授、原计算机学院院长钟章队教授:http://faculty.bjtu.edu.cn/108/ 

4. 北京交通大学艾渤教授:http://faculty.bjtu.edu.cn/7997/

5. 北京交通大学何睿斯教授:http://faculty.bjtu.edu.cn/8801/

6. 北京交通大学陈为教授:http://faculty.bjtu.edu.cn/8583/

7. 加拿大郜捷教授:https://www.csit.carleton.ca/jie.gao/ 



    我组隶属于钟章队教授的大团队,隶属于北交大协同创新中心。 北京交通大学独立牵头的“2011计划”“轨道交通安全协同创新中心”是国家首批14个认定的协同创新中心之一。将主要为我国高速铁路等轨道交通建设提供技术创新等方面的支持。

    当前我组招收计算机、通信、电子、自动控制、光科、数学等专业的硕士和博士。且给在校优秀本科生提供两类奖学金:Scholarship for Diligent Talents和Scholarship for Outstanding Undergraduates。

  有意出国深造或者读硕攻博的本科生可以发邮件给我,附上简历和本科所有课程的成绩单。有意去两个合作单位(阿尔伯塔大学和清华大学)保研/读硕/攻博的本科生也可以联系我。   

    曾藤缠(2012-2016)、马硕、赵文晶、周晓宇(2013-2017)获得 Scholarship for Diligent Talents。

    张冲(2015-2019)、余亦杰(2015-2019)获得2017-2018学年 Scholarship for Outstanding Undergraduates。

    张明坤(2016-2020)获得2018-2019学年 Scholarship for Outstanding Undergraduates。

  

 张冲(2015-2019)获得2018-2019学年 Scholarship for Diligent Talents

 覃尧、黄欣宇(2015-2019)获得2018-2019学年 Scholarship for Outstanding Undergraduates 。

 张明坤、郑晖、杨子耀(2016-2020)获得2019-2020学年 Scholarship for Outstanding Undergraduates 。

杨道坦、张逸康(2018-2022)获得2020-2021学年 Scholarship for Outstanding Undergraduates 。

杨道坦、张逸康、邓修齐(2018-2022)获得2021-2022学年 Scholarship for Outstanding Undergraduates 。

王若珩(2021-2025)获得2021-2022学年 Scholarship for Outstanding Undergraduates 。

王若珩(2021-2025)获得2022-2023学年 Scholarship for Outstanding Undergraduates ,并已保研至北京大学软件与微电子学院。


我组招收博士,博士毕业要求为3篇IEEE Trans论文。 2篇letter可以算为一篇IEEE Trans。

第一篇我指导,写不出来我负责;第二篇我们合作,共同负责;第三篇博士独立完成,独立负责。

三篇都是博士一作,我为通信作者。


研究方向

  • 计算机技术
  • 人工智能
  • 大数据技术与工程
  • 软件工程
  • 网络智能与移动计算
  • 智能感知与具身智能
  • 新一代电子信息技术

招生专业

  • 计算机科学与技术博士
  • 人工智能博士
  • 计算机科学与技术硕士
  • 计算机技术硕士
  • 人工智能硕士
  • 大数据技术与工程硕士
  • 软件工程硕士
  • 新一代电子信息技术(含量子技术等)硕士
  • 软件工程博士
  • 计算机技术博士
  • 新一代电子信息技术(含量子技术等)博士

科研项目

曾经主持的项目:

  1. 北京交通大学:高速铁路环境中的天线发送和接收信号测试分析,2014-01-01--2015-06-30,15.0万元,主持
  2. 其它:无线时变中继信道关键技术研究,2012-11-01--2014-10-31,2.0万元,主持
  3. 国家自然科学基金"青年基金":高速移动环境下混叠中继时变信道建模与逼近、参数估计和导频设计,2013-01-01--2015-12-31,25.0万元,主持
  4. 基本科研业务费:无线移动中继系统中的导频序列设计研究,2012-10-30--2014-10-30,8.0万元,主持
  5. 腾讯公司:无线双向中继网络中的时变信道估计,2012-07-01--2014-06-30,20.0万元,主持
  6. 人才基金:中继网络中的时变信道参数估计,2012-03-26--2013-03-25,1.5万元,主持
  7. 诺基亚:5G高速移动无线网络关键技术,2015-2016年,16万元,主持

当前在研重点项目:

   1.环境反向散射通信系统的信道估计和信号检测理论研究,国家自然基金面上项目2016年1月-2019年12月(国家级项目:61571037,百万经费)

   环境反向散射技术是利用周围环境中已有的无线信号,采取转发或不转发该信号的方式分别代表01比特,以实现标签和读写器之间的通信该技术将已有的无线信号作为能量源来通信,是一种全新的通信方式,能让传感器摆脱电池的束缚,具有重大的应用价值。然而,作为一个新生事物,目前只有实验指出了该技术可行,相关的通信理论还有待完善,亟需研究。本项目聚焦于环境反向散射通信系统中的信道估计和信号检测理论,首先透彻研究环境反向散射信号和信道的统计特性,建立平坦衰落信道和频率选择性衰落信道下的环境反向散射信号及系统的数学理论模型,在此理论模型的基础上设计信道估计和信号检测算法,理论分析优化检测误比特率和系统吞吐量,最后利用硬件测试平台实现估计和检测算法并加以验证。本项目能为新一代RFID产品和传感器技术的发展提供理论支撑,搭建的硬件测试平台对物联网产品的商用化和推广应用有很好的借鉴和参考价值,有力推动物联网的发展。

   2. 基于无源反向散射通信技术的物联网基础理论研究,国家自然基金面上项目,2019年1月-2022年12月 (国家级项目:61871026,63万元

   无源反向散射通信技术是物联网新兴的技术之一,其能让传感器摆脱电池的束缚,能降低无线传感器的成本,在物联网中有广泛的潜在应用需求。然而,作为一个新生事物,当前对于基于无源反向散射通信技术的物联网这方面的研究近两年刚起步还远未成熟,仍有大量的理论空白和一系列实际应用问题亟待解决。本项目聚焦于基于无源反向散射通信技术的物联网基础理论研究,包括无源反向散射信道参数估计算法设计(侧重传统方法和机器学习辅助方法两个方面),多天线接收信号检测理论,信道容量和中断概率性能分析,多用户接入和组网研究。 本项目的实施能加速促进物联网的建设和智慧城市的发展,为新一代物联网产品和传感器技术的发展提供理论支撑和测试依据,为抢占物联网领域基础研究国际前沿提供有力支撑。

   3.高铁环境中的无线信道参数特性和信道估计理论(Nokia企业项目,二十万经费)

   当前旅客在高铁环境中语音通信和上网业务都存在困难。其关键因素在于:无线信道特性、同步、信道估计和切换。本项目聚焦于高铁环境中的无线信道特性和估计算法,为解决高速列车上的用户无线通话和上网问题提供有效可靠方案

   4.智慧物联网方向计算机学科建设基金,2018-2020,11万元,来自企业合作项目。运用人工智能中的机器学习理论(偏重神经网络算法和强化学习算法)来解决无线网络中的估计检测问题。

   5. 高速率绿色物联网验证平台,116万,2020-2023,企业合作项目,运用反向散射技术和先进信号处理算法,构建近距离高速率物联网演示平台。

   6. 与蜂窝网络深入融合的无源反向散射通信关键技术研究, 250万,2023-2026,国家自然科学基金联合重点项目(主持),U22B2004

   7. 超高速率物联网硬件平台,95万,2022-2024,企业产学研项目

教学工作

已毕业研究生:

刘杨(博士),2012.9 - 2017.10  就职于航天九院,发表A1区JSAC论文

JiaY(博士), 2011.9 - 2017.10  就职于铁科院

       王熙宇(博士),2015.9-2017.4 公派赴芬兰阿尔托大学(相当于中国的北京大学)读博,国家奖学金


顾琪(博士),  提前硕士毕业攻读博士学位 ,发表8篇IEEE期刊和会议论文(A2区2篇,A3区2篇,A4区2篇),国家奖学金。就职于中国移动研究院。

范典(博士),  发表A1区JSAC论文,发表12篇IEEE期刊和会议论文(A1区1篇,A2区3篇),三次获国家奖学金。就职于中国信息通信研究院。


杨立琨(专硕),2012.9 - 2014.6 就职于中国建设银行

卢康(专硕),2014.9 - 2016.6  就职于国家保密局,属国家部委

马振(学硕),2014.9 - 2017.3  就职于量化派公司,两次获国家奖学金

李倩,2015.9-2017.4 就职于华为,国家奖学金

马硕,2016年入学, 发表2篇CCF C类SCI期刊论文,两次获国家奖学金。就职于中国移动研究院。

朱玥,2017年入学,发表会议论文1篇,国家奖学金。就职于中国信息通信研究院。

赵雁榕,2017年入学, 已发表1篇A3区IEEE期刊论文,国家奖学金。就职于中国银行。

董怡廷,2018年入学。

姚超超,2019年入学。就职于蚂蚁金福。

赵文晶,2016年入学,发表8篇IEEE期刊和会议论文(A1区1篇,A2区3篇含1篇IEEE Trans, A3区2篇),六篇SCI。国家奖学金。2022年毕业,就职于中国电信研究院。

胡冠杰,2019年入学。就职于荣耀公司。


在读博士生

林峻良,2019年入学,已发表5篇IEEE期刊和会议论文(A1A2A3A4区SCI期刊各1篇,含1篇IEEE Trans)

牟云平,2020年入学。

崔子琦,2021年入学。

张译允,2022年入学。

杨义冰,2022年入学。

包阔,2023年入学。

张陈鹏,2023年入学。

黄怡霖,林育翀,傅文昊,拟将入学 (詹天佑学院直博)



在读硕士生:  

郭颖(2022年国家奖学金),2020年入学

曹水泠,杜英杰,任彩虹,2020年入学

包阔、王子豪,严和霖,宁泽旭,2021年入学。

许亚婷,龙云飞,夏佳莉,夏雨涵,高暄,王皓,伍思颖,2022年入学



研究生课程:

算法分析与设计、Convex Optimization Theory and Its Applications (全英文)


本科生课程:

人工智能、算法设计与问题求解 、信号与系统、IT职业英语

论文/期刊

http://dblp.uni-trier.de/search?q=Gongpu+Wang   

http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=Gongpu%20Wang 

https://www.researchgate.net/profile/Gongpu_Wang

SCI检索英文期刊论文及中文期刊论文列表: 


2024

  1. J. Lin et al., "Versatile-Modulation and Megabit-Rate Backscatter System: Degisn, Implementation and Experimental Results," in IEEE Internet of Things Journal, vol. 11, no. 5, pp. 8240-8252, 1 March, 2024, doi: 10.1109/JIOT.2023.3318634.https://ieeexplore.ieee.org/document/10261499
  2. Z. Cui, G. Wang, M. Liu, B. Ai, T. Q. S. Quek and C. Tellambura, "Wavy Signals and Striped Constellations for Backscatter Communications: Origins and Solutions," in IEEE Transactions on Wireless Communications, 23(10): 12815-12829 , 2024, doi: 10.1109/TWC.2024.3396338. http://ieeexplore.ieee.org/document/10528254
  3. Y. Zhang, G. Wang, H. Liu, W. Gong and F. Gao, "WiFi-Based Indoor Human Activity Sensing: A Selective Sensing Strategy and a Multi-Level Feature Fusion Approach," in IEEE Internet of Things Journal, 11(18): 29335-29347 , 2024, doi: 10.1109/JIOT.2024.3397708.https://ieeexplore.ieee.org/document/10522485
  4. G. Sun et al., "Geometric-Based Channel Modeling and Analysis for Double-RIS-Aided Vehicle-to-Vehicle Communication Systems," in IEEE Internet of Things Journal, vol. 11, no. 10, pp. 18888-18901, 15 May15, 2024, doi: 10.1109/JIOT.2024.3370148.
    https://ieeexplore.ieee.org/document/10445446
  5. X. Zhang, Y. Xu, H. Zhang, G. Wang, X. Li and C. Yuen, "Full-Duplex-Enhanced Wireless-Powered Backscatter Communication Networks: Radio Resource Allocation and Beamforming Joint Optimization," in IEEE Transactions on Green Communications and Networking, doi: 10.1109/TGCN.2024.3354986.https://ieeexplore.ieee.org/document/10400873
  6. X. Su, R. He, B. Ai, Y. Niu and G. Wang, "Channel Estimation for RIS Assisted THz Systems With Beam Split," in IEEE Communications Letters, vol. 28, no. 3, pp. 637-641, March 2024, doi: 10.1109/LCOMM.2024.3352230. https://ieeexplore.ieee.org/document/10387516
  7. C. Liu et al., "Reconfigurable Intelligent Surface Assisted High-Speed Train Communications: Coverage Performance Analysis and Placement Optimization," in IEEE Transactions on Vehicular Technology, vol. 73, no. 3, pp. 3750-3766, March 2024, doi: 10.1109/TVT.2023.3325627.https://ieeexplore.ieee.org/document/10287590
  8. Y. Yuan et al., "A 3D Geometry-Based Reconfigurable Intelligent Surfaces-Assisted mmWave Channel Model for High-Speed Train Communications," in IEEE Transactions on Vehicular Technology, vol. 73, no. 2, pp. 1524-1539, Feb. 2024, doi: 10.1109/TVT.2023.3321645. https://ieeexplore.ieee.org/document/10271728
  9. W. Zhao et al., "Performance Analysis of CR-Enabled AmBC NOMA Under IQI and Sensitivity Constraints," in IEEE Access, vol. 12, pp. 122724-122734, 2024, doi: 10.1109/ACCESS.2024.3453391. https://ieeexplore.ieee.org/document/10663399
  10. H. Yan, G. Wang, F. Gao and W. Yuan, "Dynamic Convolutional Neural Network for Wireless Interference Identification," in IEEE Communications Letters, vol. 28, no. 1, pp. 83-87, Jan. 2024, doi: 10.1109/LCOMM.2023.3336938. https://ieeexplore.ieee.org/document/10328870
  11. Mu Y, Yao C, Fan D, et al. Channel estimation for backscatter communication systems with retrodirective arrays[J]. IET Commun. 18(11): 671-678 (2024). https://doi.org/10.1049/cmu2.12777
  12. Z. Cui, G. Wang, J. Gao, X. Lei and C. Tellambura, "Channel Estimation for Backscatter Communication Systems Under Circuit Sensitivity Constraint," in IEEE Transactions on Vehicular Technology, vol. 73, no. 5, pp. 7441-7446, May 2024, doi: 10.1109/TVT.2023.3347926. https://ieeexplore.ieee.org/document/10375798
  13. Z. Cui, D. Fan, D. Chen, G. Wang and B. Ai, "Dynamic Self-Interference Cancellation for Mitigating PLL Non-Ideality in Backscatter Communications," 2024 IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates, 2024, pp. 01-06, doi: 10.1109/WCNC57260.2024.10570776. https://ieeexplore.ieee.org/document/10570776
  14. Y. Xu, G. Wang, R. Xu, Y. Liu, C. Tellambura and B. Liu, "Channel Estimation and Pilot Design for Ambient Internet of Things with Frequency Offsets," in IEEE Transactions on Vehicular Technology, doi: 10.1109/TVT.2024.3484759. https://ieeexplore.ieee.org/document/10726883
  15. L. Wang, R. Fan, H. Hu, G. Wang and J. Cheng, "Age of Information Minimization for Opportunistic Channel Access," in IEEE Transactions on Communications, doi: 10.1109/TCOMM.2024.3415608. https://ieeexplore.ieee.org/document/10559839
  16. B. Gu, D. Li, H. Ding, G. Wang and C. Tellambura, "Breaking the Interference and Fading Gridlock in Backscatter Communications: State-of-the-Art, Design Challenges, and Future Directions," in IEEE Communications Surveys & Tutorials, doi: 10.1109/COMST.2024.3436082. https://ieeexplore.ieee.org/document/10616210
  17. X. Yang, H. Liu, S. Gong, G. Wang and C. Xing, "STAR-RIS-Assisted Hybrid MIMO mmWave Communications," in IEEE Internet of Things Journal, vol. 11, no. 21, pp. 35141-35154, 1 Nov.1, 2024, doi: 10.1109/JIOT.2024.3436831. https://ieeexplore.ieee.org/document/10620364
  18. S. -Y. Zhang, X. Yue, B. Shahrrava, Y. Zhang and G. Wang, "A Polar-Coded PAPR Reduction Scheme Based On Hybrid Index Modulation," in IEEE Open Journal of the Communications Society, doi: 10.1109/OJCOMS.2024.3427628. https://ieeexplore.ieee.org/document/10597645/


2023

  1. J. Lin, G. Wang, S. Atapattu, R. He, G. Yang and C. Tellambura, "Transmissive Metasurfaces Assisted Wireless Communications on Railways: Channel Strength Evaluation and Performance Analysis," in IEEE Transactions on Communications, vol. 71, no. 3, pp. 1827-1841, March 2023, doi: 10.1109/TCOMM.2023.3239932http://ieeexplore.ieee.org/document/10026286   (CCF B类期刊)
  2. W. Feng, S. Lin, N. Zhang, G. Wang, B. Ai and L. Cai, "Joint C-V2X Based Offloading and Resource Allocation in Multi-Tier Vehicular Edge Computing System," in IEEE Journal on Selected Areas in Communications, vol. 41, no. 2, pp. 432-445, Feb. 2023, doi: 10.1109/JSAC.2022.3227081. http://ieeexplore.ieee.org/document/9978912  (CCF A类期刊)
  3. Y. Wang, G. Wang, R. He, B. Ai and C. Tellambura, "Doppler Shift and Channel Estimation for Intelligent Transparent Surface Assisted Communication Systems on High-Speed Railways," in IEEE Transactions on Communications, doi: 10.1109/TCOMM.2023.3275590. https://ieeexplore.ieee.org/document/10124018(CCF B类期刊)
  4. H. Yan, G. Wang, F. Gao and W. Yuan, "Dynamic Convolutional Neural Network for Wireless Interference Identification," in IEEE Communications Letters, vol. 28, no. 1, pp. 83-87, Jan. 2024. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10328870
  5. Z. Cui, G. Wang, J. Gao, X. Lei and C. Tellambura, "Channel Estimation for Backscatter Communication Systems under Circuit Sensitivity Constraint," in IEEE Transactions on Vehicular Technology, Early Access. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375798 


2022

  1. J. Lin, G. Wang, Z. Zheng, R. Ye, R. He and B. Ai, "Modeling and Channel Estimation for Piezo-Acoustic Backscatter Assisted Underwater Acoustic Communications," in China Communications, vol. 19, no. 11, pp. 297-307, Nov. 2022, doi: 10.23919/JCC.2022.00.011. https://ieeexplore.ieee.org/document/9772466
  2. Y. Guo, G. Wang, R. Xu, R. He, X. Wei and C. Tellambura, "Capacity Analysis for Wireless Symbiotic Communication Systems With BPSK Tags Under Sensitivity Constraint," in IEEE Communications Letters, vol. 26, no. 1, pp. 44-48, Jan. 2022, doi: 10.1109/LCOMM.2021.3125342. https://ieeexplore.ieee.org/document/9600844
  3. B. Yuan et al., "A UAV-Assisted Search and Localization Strategy in Non-Line-of-Sight Scenarios," in IEEE Internet of Things Journal, vol. 9, no. 23, pp. 23841-23851, 1 Dec.1, 2022, doi: 10.1109/JIOT.2022.3188557. http://ieeexplore.ieee.org/document/9815239
  4. Z. Cui, Z. Wang, G. Wang, R. Xu and C. Tellambura, "Capacity Analysis for Tunnel Diode Amplifier Assisted Ambient Backscatter Communications," in IEEE Access, vol. 10, pp. 98562-98571, 2022, doi: 10.1109/ACCESS.2022.3206806. http://ieeexplore.ieee.org/document/9893098 


2021

  1. G. Yang, Y. Liao, Y. -C. Liang, O. Tirkkonen, G. Wang and X. Zhu, "Reconfigurable Intelligent Surface Empowered Device-to-Device Communication Underlaying Cellular Networks," in IEEE Transactions on Communications, vol. 69, no. 11, pp. 7790-7805, Nov. 2021, doi: 10.1109/TCOMM.2021.3102640. https://ieeexplore.ieee.org/document/9507508
  2. R. He, B. Ai, G. Wang, M. Yang, C. Huang and Z. Zhong, "Wireless Channel Sparsity: Measurement, Analysis, and Exploitation in Estimation," in IEEE Wireless Communications, vol. 28, no. 4, pp. 113-119, August 2021, doi: 10.1109/MWC.001.2000378. https://ieeexplore.ieee.org/document/9373010
  3. W. Chen et al., "AI assisted PHY in future wireless systems: Recent developments and challenges," in China Communications, vol. 18, no. 5, pp. 285-297, May 2021, doi: 10.23919/JCC.2021.05.019. https://ieeexplore.ieee.org/document/9444253
  4. Z. Cui, G. Wang, X. Wei, D. Jiang and B. Ai, "Future Applications and Technical Challenges of Backscatter Communications," in Mobile Communication, vol. 45, no. 4, pp. 29-36, July 2021, doi:10.3969/j.issn.1006-1010.2021.04.005


2020

  1. C. Yao, Y. Liu, X. Wei, G. Wang and F. Gao, "Backscatter technologies and the future of internet of things: Challenges and opportunities," in Intelligent and Converged Networks, vol. 1, no. 2, pp. 170-180, Sept. 2020, doi: 10.23919/ICN.2020.0013. https://ieeexplore.ieee.org/document/9310744
  2. Z. Ma et al., "Impact of UAV Rotation on MIMO Channel Characterization for Air-to-Ground Communication Systems," in IEEE Transactions on Vehicular Technology, vol. 69, no. 11, pp. 12418-12431, Nov. 2020, doi: 10.1109/TVT.2020.3028301. https://ieeexplore.ieee.org/document/9211744
  3. Q. Gu, G. Wang, R. Fan, F. Li, H. Jiang and Z. Zhong, "Optimal Resource Allocation for Wireless Powered Sensors: A Perspective From Age of Information," in IEEE Communications Letters, vol. 24, no. 11, pp. 2559-2563, Nov. 2020, doi: 10.1109/LCOMM.2020.3010324. https://ieeexplore.ieee.org/document/9144239
  4. S. Atapattu, R. Fan, P. Dharmawansa, G. Wang, J. Evans and T. A. Tsiftsis, "Reconfigurable Intelligent Surface Assisted Two–Way Communications: Performance Analysis and Optimization," in IEEE Transactions on Communications, vol. 68, no. 10, pp. 6552-6567, Oct. 2020, doi: 10.1109/TCOMM.2020.3008402. https://ieeexplore.ieee.org/document/9138463
  5. M. Yang et al., "Measurements and Cluster-Based Modeling of Vehicle-to-Vehicle Channels With Large Vehicle Obstructions," in IEEE Transactions on Wireless Communications, vol. 19, no. 9, pp. 5860-5874, Sept. 2020, doi: 10.1109/TWC.2020.2997808. https://ieeexplore.ieee.org/document/9109751  (CCF A类期刊)
  6. J. Lin, G. Wang, R. Fan, Y. Zou, T.A. Tsiftsis and C. Tellambura, "Feature-oriented channel estimation in reconfigurable intelligent surfaces-assisted wireless communication systems," in IET Communications, vol. 14, no. 19, pp. 3458-3463, Dec. 2020. https://digital-library.theiet.org/content/journals/10.1049/iet-com.2020.0372
  7. Q. Gu, Y. Jian, G. Wang, R. Fan, H. Jiang and Z. Zhong, "Mobile Edge Computing via Wireless Power Transfer over Multiple Fading Blocks: An Optimal Stopping Approach," in  IEEE Transactions on Vehicular Technology, vol. 69, no. 9, pp. 10348-10361, Sept. 2020, doi: 10.1109/TVT.2020.3005406.https://ieeexplore.ieee.org/document/9127796 
  8. W. Zhao, G. Wang, B. Ai, J. Li and C. Tellambura, "Backscatter Aided Wireless Communications on High Speed Rails: Capacity Analysis and Transceiver Design," in IEEE Journal on Selected Areas in Communications, vol. 38, no. 12, pp. 2864-2874, Dec. 2020, doi: 10.1109/JSAC.2020.3005494. https://ieeexplore.ieee.org/document/9127462 (A1,CCF A类)
  9. W. Zhao, G. Wang, S. Atapattu, T. A. Tsiftsis and X. Ma, "Performance Analysis of Large Intelligent Surface Aided Backscatter Communication Systems," in IEEE Wireless Communications Lettersvol. 9, no. 7, pp. 962-966, July 2020.   https://ieeexplore.ieee.org/document/9017956
  10. Y. Zhao, W. Zhao, G. Wang, B. Ai, H. H. Putra and B. Juliyanto, "AoA-based channel estimation for massive MIMO OFDM communication systems on high speed rails," in China Communications, vol. 17, no. 3, pp. 90-100, Mar. 2020. https://ieeexplore.ieee.org/document/9058608
  11. W. Zhao, G. Wang, S. Atapattu, T. A. Tsiftsis and C. Tellambura, "Is Backscatter Link Stronger than Direct Link in Reconfigurable Intelligent Surface-Assisted System?," in IEEE Communications Letters, vol. 24, no. 6, pp. 1342-1346, June 2020.   https://ieeexplore.ieee.org/document/9034159
  12. C. Chen, G. Wang, H. Guan, Y. Liang and C. Tellambura, "Transceiver Design and Signal Detection in Backscatter Communication Systems with Multiple-Antenna Tags," in IEEE Transactions on Wireless Communications, vol. 19, no. 5, pp. 3273-3288, May 2020.   https://ieeexplore.ieee.org/document/8995805
  13. Z. Ma, B. Ai, R. He, G. Wang, Y. Niu and Z. Zhong, "A Wideband Non-Stationary Air-to-Air Channel Model for UAV Communications," in IEEE Transactions on Vehicular Technology, vol. 69, no. 2, pp. 1214-1226, Feb. 2020.   https://ieeexplore.ieee.org/document/8937764
  14. Q. Gu, G. Wang, R. Fan, N. Zhang, H. Jiang and Z. Zhong, "Optimal Resource Allocation in Wireless Powered Relay Networks With Nonlinear Energy Harvesters," in IEEE Wireless Communications Letters, vol. 9, no. 3, pp. 371-375, March 2020.   https://ieeexplore.ieee.org/document/8913468
  15. C. Chen, G. Wang, P. D. Diamantoulakis, R. He, G. K. Karagiannidis and C. Tellambura, "Signal Detection and Optimal Antenna Selection for Ambient Backscatter Communications With Multi-Antenna Tags," in IEEE Transactions on Communications, vol. 68, no. 1, pp. 466-479, Jan. 2020.   https://ieeexplore.ieee.org/document/8864091
  16. R. He et al., "Propagation Channels of 5G Millimeter-Wave Vehicle-to-Vehicle Communications: Recent Advances and Future Challenges," in IEEE Vehicular Technology Magazine, vol. 15, no. 1, pp. 16-26, March 2020.   https://ieeexplore.ieee.org/document/8851421
  17. Y. Gou, G. Wang, Z. Li, R. He and Z. Zhong, " Smart Tags Based on the Batteryless Backscatter Technology: Applications and Challenges" in Chinese Journal on Internet of Things, vol. 4, no. 3, pp. 20-29. Sept. 2020, doi: 10.11959/j.issn.2096-3750.2020.00183



2019

  1. D. Fan et al., "Channel Estimation and Self-Positioning for UAV Swarm," in IEEE Transactions on Communications, vol. 67, no. 11, pp. 7994-8007, Nov. 2019.   https://ieeexplore.ieee.org/document/8788630
  2. W. Zhao, G. Wang, S. Atapattu, R. He and Y. Liang, "Channel Estimation for Ambient Backscatter Communication Systems With Massive-Antenna Reader," in IEEE Transactions on Vehicular Technology, vol. 68, no. 8, pp. 8254-8258, Aug. 2019.   https://ieeexplore.ieee.org/document/8746230
  3. D. Fan, F. Gao, G. Wang, Z. Zhong and A. Nallanathan, "Channel Estimation and Transmission Strategy for Hybrid mmWave NOMA Systems," in IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 3, pp. 584-596, June 2019.   https://ieeexplore.ieee.org/document/8678835
  4. C. Zhang, G. Wang, M. Jia, R. He, L. Zhou and B. Ai, "Doppler Shift Estimation for Millimeter-Wave Communication Systems on High-Speed Railways," in IEEE Access, vol. 7, pp. 40454-40462, 2019.   https://ieeexplore.ieee.org/document/8424341
  5. Fan, R., Jin, S., Gu, Q. et al. Data-Driven Power Allocation for Medium Access Control in LTE-U Coexisting with Wi-Fi. Mobile Netw Appl 24, 1618–1629 (2019).   https://link.springer.com/article/10.1007%2Fs11036-018-1182-0


2018

  1. D. Fan et al., "Angle Domain Channel Estimation in Hybrid Millimeter Wave Massive MIMO Systems," in IEEE Transactions on Wireless Communications, vol. 17, no. 12, pp. 8165-8179, Dec.2018.   https://ieeexplore.ieee.org/document/8493600/.
  2. S. Ma, G. Wang, Y. Wang, Z. Zhao, "Signal Ratio Detection and Approximate Performance Analysis for Ambient Backscatter Communication Systems with Multiple Receiving Antennas," in Mobile Network and Applications, vol. 23, no. 6, pp. 1478-1486, Dec. 2018.  https://link.springer.com/article/10.1007%2Fs11036-017-0980-0
  3. S. Ma, G. Wang, R. Fan and C. Tellambura, "Blind Channel Estimation for Ambient Backscatter Communication Systems," in IEEE Communications Letters, vol. 22, no. 6, pp. 1296-1299, June 2018http://ieeexplore.ieee.org/document/8320359/
  4. W. Zhao, G. Wang, S. Atapattu, C. Tellambura, and H. Guan, "Outage analysis of ambient backscatter communication systems,"  in IEEE Communications Letters, vol. 22, no. 8, pp. 1736-1739, Aug. 2018. https://ieeexplore.ieee.org/document/8370749/
  5. X. Wang, G. Wang, R. Fan and B. Ai, "Channel Estimation With Expectation Maximization and Historical Information Based Basis Expansion Model for Wireless Communication Systems on High Speed Railways," in IEEE Access, vol. 6, pp. 72-80, 2018. http://ieeexplore.ieee.org/document/8019793/ 
  6. Q. Gu, G. Wang, R. Fan, Z. Zhong, K. Yang and H. Jiang, "Rate-Energy Tradeoff in Simultaneous Wireless Information and Power Transfer over Fading Channels with Uncertain Distribution," in IEEE Transactions on Vehicular Technology, vol. PP, no. 99, pp. 11. http://ieeexplore.ieee.org/document/8128508/
  7. W. Zhao, G. Wang, R. Fan, L. S. Fan and S. Atapattu, "Ambient Backscatter Communication Systems: Capacity and Outage Performance Analysis," in IEEE Access, vol. 6, no. 1, pp. 22695-22704, 2018. https://ieeexplore.ieee.org/document/8345348/
  8. Y. Zhao, X. Wang, G. Wang, R. He, Y. Zou and Z. Zhao, "Channel estimation and throughput evaluation for 5G wireless communication systems in various scenarios on high speed railways," in China Communications, vol. 15, no. 4, pp. 86-97, April 2018. https://ieeexplore.ieee.org/document/8357743/
  9. R. Fan, J. Cui, W. Chen, J. An and G. Wang, "Resource Allocation in Cognitive Underlay System With Uncertain Interference Channel’s Statistics," in IEEE Communications Letters, vol. 22, no. 5, pp. 1022-1025, May 2018. https://ieeexplore.ieee.org/document/8295036/
  10. R. He, B. Ai, G. L. Stüber, G. Wang and Z. Zhong, "Geometrical-Based Modeling for Millimeter-Wave MIMO Mobile-to-Mobile Channels," in IEEE Transactions on Vehicular Technology, vol. 67, no. 4, pp. 2848-2863, April 2018. https://ieeexplore.ieee.org/document/8114238/


2017 

  1. Y. Liu, G. Wang, Z. Dou and Z. Zhong, "Coding and Detection Schemes for Ambient Backscatter Communication Systems," in IEEE Access, vol. 5, pp. 4947-4953, 2017. https://ieeexplore.ieee.org/document/7873313/
  2. X. Zhou, G. Wang, Y. Wang and J. Cheng, "An Approximate BER Analysis for Ambient Backscatter Communication Systems With Tag Selection," in IEEE Access, vol. 5, pp. 22552-22558, 2017. https://ieeexplore.ieee.org/document/7974729/
  3. S. Jin, R. Fan, G. Wang and X. Bu, "Network Utility Maximization in Wireless Networks Over Fading Channels With Uncertain Distribution," in IEEE Communications Letters, vol. 21, no. 5, pp. 1107-1110, May 2017. https://ieeexplore.ieee.org/document/7817831/
  4. D. Fan, F. Gao, G. Wang, Z. Zhong and A. Nallanathan, "Angle Domain Signal Processing-Aided Channel Estimation for Indoor 60-GHz TDD/FDD Massive MIMO Systems," in IEEE Journal on Selected Areas in Communications, vol. 35, no. 9, pp. 1948-1961, Sept. 2017. http://ieeexplore.ieee.org/document/7961161/  (A1区SCI检索论文IF:8.085) (A1,CCF A类
  5. J. Qian, F. Gao, G. Wang, S. Jin and H. Zhu, "Noncoherent Detections for Ambient Backscatter System," in IEEE Transactions on Wireless Communications, vol. 16, no. 3, pp. 1412-1422, Mar. 2017. http://ieeexplore.ieee.org/document/7769255/
  6. J. Qian, F. Gao, G. Wang, S. Jin and H. Zhu, "Semi-Coherent Detection and Performance Analysis for Ambient Backscatter System," in IEEE Transactions on Communications, vol. 65, no. 12, pp. 5266-5279, Dec. 2017. http://ieeexplore.ieee.org/document/8007328/


2016

  1. Q. Gu, G. Wang, R. Fan and B. Ai, "Efficient spectrum sensing and power allocation for cognitive two-way relay network," in IET Communications, vol. 10, no. 6, pp. 616-623, 2016. https://ieeexplore.ieee.org/document/7452481/?tp=&arnumber=7452481
  2. Y. Liu, G. Wang, M. Xiao and Z. Zhong, "Spectrum Sensing and Throughput Analysis for Cognitive Two-Way Relay Networks With Multiple Transmit Powers," in IEEE Journal on Selected Areas in Communications, vol. 34, no. 11, pp. 3038-3047, Nov. 2016. http://ieeexplore.ieee.org/document/7582370/  (A1区SCI检索论文IF:8.085, CCF A类)
  3. G. Wang, F. Gao, R. Fan and C. Tellambura, "Ambient Backscatter Communication Systems: Detection and Performance Analysis," in IEEE Transactions on Communications, vol. 64, no. 11, pp. 4836-4846, Nov. 2016. http://ieeexplore.ieee.org/document/7551180/
  4. Y. Zou and G. Wang, "Intercept Behavior Analysis of Industrial Wireless Sensor Networks in the Presence of Eavesdropping Attack," in IEEE Transactions on Industrial Informatics, vol. 12, no. 2, pp. 780-787, April. 2016.  http://ieeexplore.ieee.org/document/7029608/
  5. J. Zhu, Y. Zou, G. Wang, Y. D. Yao and G. K. Karagiannidis, "On Secrecy Performance of Antenna-Selection-Aided MIMO Systems Against Eavesdropping," in IEEE Transactions on Vehicular Technology, vol. 65, no. 1, pp. 214-225, Jan. 2016. http://ieeexplore.ieee.org/document/7024178/
  6. R. Fan, W. Chen, J. An, F. Gao and G. Wang, "Robust Power and Bandwidth Allocation in Cognitive Radio System With Uncertain Distributional Interference Channels," in IEEE Transactions on Wireless Communications, vol. 15, no. 10, pp. 7160-7173, Oct. 2016. http://ieeexplore.ieee.org/document/7533465/
  7. Z. Ma, G. Wang, Y. Zou, B. Ai, "Joint sensing and transmission for cognitive amplify-and-forward two-way relay networks," in Wireless Communications and Mobile Computing, vol. 16, no. 17, pp.  2809-2823, Sept. 2016.
  8. J. You, Z. Zhong, Zhongzhao Dou, Jing Dang and G. Wang, "Wireless relay communication on high speed railway: Full duplex or half duplex?," in China Communications, vol. 13, no. 11, pp. 14-26, Nov. 2016. https://ieeexplore.ieee.org/document/7781714/
  9. R. He et al., "High-Speed Railway Communications: From GSM-R to LTE-R," in IEEE Vehicular Technology Magazine, vol. 11, no. 3, pp. 49-58, Sept. 2016. https://ieeexplore.ieee.org/document/7553613/



2015

  1. Y. Liu, Z. Zhong, G. Wang, D. Hu, "Cyclostationary Detection Based Spectrum Sensing for Cognitive Radio Networks," in JCM, vol. 10, no. 1, pp. 74-79, 2015.
  2. G. Wang, Q. Liu, R. He, F. Gao and C. Tellambura, "Acquisition of channel state information in heterogeneous cloud radio access networks: challenges and research directions," in IEEE Wireless Communications, vol. 22, no. 3, pp. 100-107, June 2015.  https://ieeexplore.ieee.org/document/7143332/  (A1区SCI检索论文IF:8.972) 
  3. X. Li, L. Gao, G. Wang, F. Gao and Q. Wu, "Investing and pricing with supply uncertainty in electricity market: A general view combining wholesale and retail market," in China Communications, vol. 12, no. 3, pp. 20-34, Mar. 2015. https://ieeexplore.ieee.org/document/7084360/
  4. Z. Tengchan, M. Zhen, W. Gongpu and Z. Zhangdui, "Green circuit design for battery-free sensors in cloud radio access network," in China Communications, vol. 12, no. 11, pp. 1-11, Nov. 2015. https://ieeexplore.ieee.org/document/7365884/



2014

  1. J. You, Z. Zhong, G. Wang and B. Ai, "Security and Reliability Performance Analysis for Cloud Radio Access Networks With Channel Estimation Errors," in IEEE Access, vol. 2, pp. 1348-1358, 2014.  https://ieeexplore.ieee.org/document/6955788/
  2. Q. Gu, G. Wang, L. Gao, M. Peng, "Security-reliability performance of cognitive AF relay-based wireless communication system with channel estimation error," in EURASIP J. Adv. Sig. Proc. 2014, vol. 1, no. 28, 2014. 
  3. X. Liu, F. Gao, G. Wang and X. Wang, "Joint Beamforming and User Selection in Multicast Downlink Channel under Secrecy-Outage Constraint," in IEEE Communications Letters, vol. 18, no. 1, pp. 82-85, Jan. 2014. https://ieeexplore.ieee.org/document/6676776/
  4. F. Qiu, H. Zhou, X. Li, G. Wang, H. Zhang, "A distributed mobility management scheme in networks with the locator/identifier separation," in Int. J. Communication Systems, vol.  27, no. 10, pp. 1874-1893, 2014. 


2013

  1. R. He, Z. Zhong, B. Ai, G. Wang, J. Ding and A. F. Molisch, "Measurements and Analysis of Propagation Channels in High-Speed Railway Viaducts," in IEEE Transactions on Wireless Communications, vol. 12, no. 2, pp. 794-805, Feb. 2013. http://ieeexplore.ieee.org/document/6378492/


2012

  1. G. Wang, F. Gao, R. Xu, C. Tellambura, "Doubly Selective Channel Estimation for Amplify-and-Forward Relay Networks," in EURASIP J. Adv. Sig. Proc. 2012, vol. 1, no.  251,  2012.  https://ieeexplore.ieee.org/document/6214372/


2011 

  1. G. Wang, F. Gao, W. Chen and C. Tellambura, "Channel Estimation and Training Design for Two-Way Relay Networks in Time-Selective Fading Environments," in IEEE Transactions on Wireless Communications, vol. 10, no. 8, pp. 2681-2691, Aug. 2011. http://ieeexplore.ieee.org/document/5898368/
  2. G. Wang, F. Gao, Y. C. Wu and C. Tellambura, "Joint CFO and Channel Estimation for OFDM-Based Two-Way Relay Networks," in IEEE Transactions on Wireless Communications, vol. 10, no. 2, pp. 456-465, Feb. 2011. http://ieeexplore.ieee.org/document/5659868/


2010

  1. G. Wang, F. Gao, X. Zhang, C. Tellambura, "Superimposed Training-Based Joint CFO and Channel Estimation for CP-OFDM Modulated Two-Way Relay Networks," in EURASIP J. Wireless Comm. and Networking 2010, Dec. 2010.


中文期刊论文列表:



2024

  1. 王若珩, 董岚, 刘铭, 王公仆, 艾渤. 环境物联网中的信道估计[J]. 物联网学报, 2024, 1-12.  http://kns.cnki.net/kcms/detail/10.1491.tp.20240814.1603.006.html.


2021

  1. 崔子琦, 王公仆, 魏旭昇, 姜大洁, 秦飞, 艾渤. 反向散射通信的未来应用与技术挑战. 移动通信, 2021,45(4): 29-36. doi:10.3969/j.issn.1006-1010.2021.04.005 /media/rte/file/2023/1/28/1674874118.pdf
  2. 张逸康,王公仆,叶如意.高速铁路高架桥场景中的复合无线信道特性[J].中兴通讯技术,2021,27(04):30-35. doi:10.12142/ZTETJ.202104007


2020

  1. 郭颖,王公仆,李宗辉,何睿斯,钟章队.基于无源反向散射技术的智能标签:应用与挑战. 物联网学报, 2020, 4(03) : 20-29. doi: 10.11959/j.issn.2096-3750.2020.00183   /media/rte/file/2023/1/28/1674874099.pdf
  2. 窦中兆赵文晶刘杨王公仆冯穗力.高速铁路场景下环境反向散射辅助的无线传输方案[J].电讯技术,2020,60(11):1303-1310. doi: 10.3969/j.issn.1001-893x.2020.11.007
  3. 窦中兆,冯穗力,王公仆.蜂窝网络自组织研究及展望[J].电讯技术,2020,60(05):609-616. doi: 10.3969/j.issn.1001-893x.2020.05.020


2019

  1. 朱玥,覃尧,董岚,王公仆.人工智能在移动通信网络中的应用:基于机器学习理论的信道估计与信号检测算法[J].信息通信技术,2019,13(01):19-25.


2017

  1. 王公仆,熊轲,刘铭等.反向散射通信技术与物联网[J].物联网学报,2017,1(01):67-75. doi:10.11959/j.issn.2096-3750.2017.00009
  2. 李倩,王公仆,李清勇,缪德山,钟章队.适应高速铁路场景的新型基扩展信道估计模型[J].铁道学报,2017,39(09):81-88. doi:10.3969/j.issn.1001-8360.2017.09.012
  3. 赵文晶,王公仆,高飞飞等. 物联网中的环境反向散射技术——反向散射信道统计特性研究[C]//中国科学技术协会,吉林省人民政府.第十九届中国科协年会——分9“互联网+”:传统产业变革新动能论坛论文集.[出版者不详],2017:51-54.


2014

  1. 曾腾缠,王公仆,盛琦贤,李仕毅.基于红外感知与无线应答的非接触式门禁系统设计[J].微型机与应用,2014,33(19):34-37. doi:10.19358/j.issn.1674-7720.2014.19.010.


专著/译著

专利

已授权专利

  1. 王公仆, 马硕, 高飞飞. 无源反向散射通信信道的参数估计方法.  专利号:ZL 201711166406.7.
  2. 王公仆, 卢康. 一种环境反向散射系统的读写器的门限值的确定方法. 专利号:ZL 201510725210.1.
  3. 许荣涛, 王公仆, 沈超, 丁寒雪, 杜英杰, 王文, 曹水泠. 一种反向散射信号强度测量方法. 专利号:ZL 202111179688.0.
  4. 高飞飞, 范典, 王公仆, 钟章队. 一种60GHz室内场景下MIMO系统信道估计方法及装置. 专利号:ZL 201610076606.2
  5. 林峻良, 王公仆, 许荣涛, 沈超, 丁寒雪, 郭颖, 杨刚. 一种反向散射通信符号定时同步系统及方法. 专利号:ZL 202210291875.6

已受理专利



  1. 宁泽旭, 王公仆, 许荣涛, 陈霞, 何睿斯, 艾渤.  一种基于深度学习的空频联合信道反馈方法.  申请号:CN202210888811.4.
  2. 崔子琦, 王公仆, 许荣涛, 何睿斯, 艾渤.  一种反向散射通信基带干扰抑制系统及方法. 申请号:CN 202310030165.2.
  3. 林峻良, 王公仆, 许荣涛, 崔子琦, 郭颖, 匡磊. 一种射频自干扰消除系统及方法. 申请号:CN 202211728329.0.
  4. 王公仆, 张鸿儒, 邵华, 高飞飞, 杨建. 一种基于准正交空时分组码的反向散射通信系统.  申请号:CN 202011145266.7.
  5. 王公仆, 林峻良, 何睿斯, 杨建. 一种水声反向散射信道估计方法. 申请号:CN 202011146236.8.
  6. 王衍文, 王公仆, 位宁. 一种信息传输方法、发送端、接收端及环境反向散射系统. 申请号:CN201710153129.X.
  7. 王衍文, 王公仆, 朱玥. 信号检测方法、读写器和系统. 申请号:CN201710070378.2.
  8. 王衍文, 王公仆, 马硕. 一种环境反向散射信号检测方法及装置. 申请号:CN201611144059.3.
  9. 许亚婷, 王公仆, 刘铭, 许荣涛, 林峻良. 载波频偏位置检测方法、装置、设备及反向散射通信系统. 申请号:CN202310334994.X.
  10. 许荣涛, 林峻良, 王公仆, 刘铭, 崔子琦, 包阔. 一种不同通信设备之间的反向散射通信方法. 申请号:CN202311182119.0.
  11. 林峻良刘铭, 范典, 王公仆, 许荣涛. 一种基于反向散射的无线设备间通信系统和方法, 申请号:CN202410087520.4
  12. 林峻良王公仆, 许荣涛, 刘铭, 齐婧雯, 张贤楠. 反向散射通信系统及方法, 申请号:CN202410286528.3



软件著作权

获奖与荣誉


三次获评最佳论文奖,一次获评十周年杰出论文奖。

  1. Gongpu Wang, Fengzhong Qu, and Zhangdui Zhong 合作论文 “Signal Detection and BER Analysis for RF-Powered Devices Ullizing Ambient Backscatter” 获评 The 2015 International Conference on Wireless Communications and Signal Processing (2015WCSP) 最佳论文奖,并获评WCSP十周年杰出论文奖。
  2. Yang Liu, Zhangdui Zhong, Qian Zhang, and Gongpu Wang 合作论文 “Spectrum Sensing for Cognitive Two-Way Relay Networks with Multiple Primary Transmit Powers”,获评 MoMM 2014 Best Workshop Paper Award。
  3.  Likun Yang, Gongpu Wang, Feifei Gao, Zhangdui Zhong, and Bin Sun 合作论文 “Channel-Parameter-Based Encryption Key Generation Algorithm And Performance Analysis For Wireless Relay Networks Against Eavesdropping” 获评 2014 International Conference on information and Communications Technologies (CT2014) 最佳论文奖。



获得2017年北京交通大学智瑾奖教金(优秀青年教师奖)。

完成《协作通信参数学习机理与传输优化方法》项目并获得2017年中国通信学会自然科学二等奖。

完成《智能共生无线通信理论与方法》项目并获得2021年中国通信学会自然科学一等奖。


获评北京交通大学第三十七批优秀主讲教师(于2017-2018学年第二学期获得),2022年再次获评。

计算机与信息技术学院2018年青年教师教学基本功比赛一等奖。

计算机与信息技术学院2018年青年教师教学基本功比赛优秀教案奖。

获得2018年度Google奖教金(谷歌奖教金)。
 

指导范典获得北京交通大学优秀博士论文奖。

指导赵文晶获得计算机与信息技术学院优秀博士论文奖。


指导顾琪、王熙宇、马硕、赵雁榕获得北京交通大学优秀硕士论文奖。


指导研究生杨立焜发表论文获得2014年IET国际信息通信技术会议最佳论文奖。

指导研究生刘杨发表论文获得2014年ACM The 12th International Conference on Advances in Mobile Computing and Multimedia(MoMM2014) 最佳论文奖。

指导研究生卢康发表论文获得2015 IEEE WCSP会议最佳论文奖,2019年获评会议十年最佳论文奖。


指导北交大本科生曾腾缠完成2013年大学生创新训练项目“非接触式门禁识别系统项目”,并获得2014年北京市级奖励。

指导北交大本科生江舒娴等完成2014年大学生创新训练项目并获得2015年北京市级奖励。

指导北交大本科生周晓宇等完成2015年大学生创新训练项目并获得2016年北京市级奖励。

指导北交大本科生张冲完成大学生创新训练项目并获得2017年和2018年国家级奖励。



 

指导北交大本科生曾腾缠(2012-2016)发表学术论文三篇,曾腾缠放弃保研资格后获得美国弗吉尼亚理工(Virginia Tech)全额奖学金,于2016年8月赴美求学。

  1. T. Zeng, Z. Ma, G. Wang, and Z. Zhong, “Green Circuit Design for Battery-Free Sensors in Cloud Radio Access Network”, China Communication, vol. 12, no. 11, pp. 1-11, Nov. 2015. (SCI)  
  2. T. Zeng, G. Wang, Y. Wang, Z. Zhong, and C. Tellambura, “Statistical Covariance Based Signal Detection for Ambient Backscatter Communication Systems”, accepted to publish in Proc. of IEEE 84th  Vehicular Technology Conference: VTC2016-Fall.
  3. Z. Ma, T. Zeng, G. Wang, and F. Gao, "Signal Detection for Ambient Backscatter Systems with Multiple Receiving Antennas", in Proc. of IEEE 14th Canadian Workshop on Information Theory(CWIT), St. John's, Canada, July 2015.

指导北交大本科生周晓宇(2013-2017),完成2016年大创项目并获得2017年北京市级奖励。指导周晓宇发表A2区SCI检索第一作者论文一篇。周晓宇放弃保研资格,于2017年8月赴美国卡耐基梅隆大学(CMU)深造。



指导北交大本科生张冲(2015-2019),完成2017年大创项目并获得国家级奖励,发表学术论文三篇。本科四年三次获得国家奖学金。

张冲获得加拿大多伦多大学(加拿大第一名校,类似中国清华大学)读博全额奖学金(连续五年,每年3万加元)。


指导北交大本科生王奕润(2018-2022),一作发表学术论文两篇,含一篇IEEE trans (CCF B 类期刊),获得宝钢奖学金(比国奖级别更高)。

社会兼职

中国通信协会青年工作委员会委员;中国通信学会高级会员。

IEEE期刊(TWC、TCom、TSP、TVT、ComLetter等)审稿人。

国家自然科学基金委会评专家。科技部工信部会评专家。


与清华大学、北京大学、北京理工大学、北京科技大学、上海交通大学、东南大学、华中科技大学、电子科技大学、南京邮电大学等国内一流高校有良好的合作交流关系。

加拿大University of Alberta、瑞典皇家工学院KTH、美国华盛顿大学、Georgia Institute of Technology和Columbia University等国际著名高校建立了长期的合作伙伴关系。