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CGIR: Conditional Generative Instance
Reconstruction Attacks against Federated

Learning
Xiangrui Xu, Pengrui Liu, Wei Wang, Hong-Liang Ma, Bin Wang, Zhen Han, and Yufei Han

Abstract—Data reconstruction attack has become an emerging privacy threat to Federal Learning (FL), inspiring a rethinking of
FL’s ability to protect privacy. While existing data reconstruction attacks have shown some effective performance, prior arts rely on
different strong assumptions to guide the reconstruction process. In this work, we propose a novel Conditional Generative Instance
Reconstruction Attack (CGIR attack) that drops all these assumptions. Specifically, we propose a batch label inference attack in non-IID
FL scenarios, where multiple images can share the same labels. Based on the inferred labels, we conduct a “coarse-to-fine” image
reconstruction process that provides a stable and effective data reconstruction. In addition, we equip the generator with a label condition
restriction so that the contents and the labels of the reconstructed images are consistent. Our extensive evaluation results on two model
architectures and five image datasets show that without the auxiliary assumptions, the CGIR attack outperforms the prior arts, even for
complex datasets, deep models, and large batch sizes. Furthermore, we evaluate several existing defense methods. The experimental
results suggest that pruning gradients can be used as a strategy to mitigate privacy risks in FL if a model tolerates a slight accuracy
loss.

Index Terms—Data Reconstruction Attacks, Privacy, Federated Learning.

✦

1 INTRODUCTION1

With the proliferation of data silos and the heightened2

awareness of privacy issues, traditional centralized machine3

learning frameworks are facing efficiency and privacy is-4

sues [1]. Federated learning (FL) has recently been proposed5

as a novel distributed machine learning paradigm, where6

several clients can jointly train a global model by sharing7

only the gradients during training [2] [3] [4]. It may appear8

safe at first glance, but the gradients as a mapping of data9

in the training model pose a potential privacy risk. For10

example, an attacker can determine whether a training sam-11

ple is involved in the training process [5] [6], or determine12

what properties the training data have [7] [8]. With the right13

attack, the attacker can even enable a detailed image recon-14

struction at the pixel level [11] [13] [14]. This will directly15

result in a privacy breach to the participants. Therefore,16

analyzing and exploring the privacy vulnerabilities of FL17

is critical to its efficient development and deployment.18
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In this work, we mainly focus on Data Reconstruction 19

Attacks (DRAs) that are considered the most severe privacy 20

leakage. Existing attack techniques for reconstructing the 21

original training data mainly fall into GAN-based class 22

representation attacks and gradient-based instance recon- 23

struction Attacks. Hitaj et al. [9] and Wang et al. [10] succes- 24

sively proposed DMU-GAN and mGAN-AI attack methods, 25

in which an attacker can train a Generative Adversarial 26

Network (GAN) against a target training set to generate 27

samples. However, these methods require the attackers to 28

have access to auxiliary raw data and require less diversity 29

for all class members. In addition, the reconstructed samples 30

are only class representations of the training samples, not 31

the exact real data. 32

Recent efforts have turned on gradient-based data re- 33

construction attacks [11] [12], which relax the assumption on 34

auxiliary data and allow pixel-level restoration, i.e., instance 35

reconstruction. The main idea behind these methods is to 36

optimize the “dummy” data (initialized with white noise) 37

into real data via continuously minimizing the distance 38

between the “dummy” gradient and the real gradient. How- 39

ever, these end-to-end approaches start with white noise 40

for optimization, which suffers from poor convergence. This 41

may be because the optimization process is unstable when 42

the gradient values fluctuate without certain constraints. 43

Geiping et al. [13] and Yin et al. [14] alleviate this 44

issue by adding some useful regularizations, e.g., batch 45

normalization (BN) statistics (i.e., the mean and variance 46

of batch training samples). The BN layer is usually used to 47

normalize the batch samples during model training. With 48

BN statistics, an attacker can apply the same normalization 49

to one’s recovery for better reconstruction. However, in a 50

realistic FL setup, local clients usually do not share their pri- 51
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vate BN statistics, dramatically reducing the scope of such52

reconstruction attacks. Experiments in [16] evaluated that53

relaxing the BN assumption can significantly weaken these54

attacks. GGL [15] combines gradient matching with a GAN55

trained on a public dataset. This approach is challenging to56

reconstruct images outside the prior distribution of public57

datasets. As a result, the reconstructions may suffer from58

information loss (e.g., change of image orientation or loss of59

key semantics).60

Unlike previous end-to-end approaches, we propose a61

three-stage optimization framework named CGIR. In the62

label inference stage, we conduct a batch label restoration63

attack that allows multiple images to share the same labels.64

The inferred labels will be provided as conditional informa-65

tion to the subsequent image inference. Then, we conduct66

a “coarse-to-fine” image reconstruction process that can67

provide a stable and effective data reconstruction. Specif-68

ically, the coarse-level stage mainly focused on recovering69

the global layout of the image contents, like shapes, and70

structures of the contents through a conditional generator.71

The fine-level stage aims to refine the textual details of local72

areas in the reconstructed images by matching the gradients.73

Different from the existing GAN-based approaches, the74

parameter update of our conditional generator does not75

depend on the discriminator trained from the auxiliary76

dataset, but on 1) the loss of matching the gradients and77

labels between the synthetic and original target images78

and 2) the Total Variance (TV) loss enhancing the stability79

of the optimization process. The encoding capacity of the80

generator provides a satisfyingly good holistic estimate of81

the image contents, which facilitates the fine-tuning of the82

following stage. Without the auxiliary data, CGIR can also83

avoid the limitation of the public data distribution on the84

reconstruction results. In addition, we equip the generator85

with inferred labels as prior information to ensure that the86

contents and the labels of the reconstructed images are87

consistent. Based on the recovered global structure, each88

pixel value of the synthetic image is updated directly in the89

fine-level stage, thus allowing a better and faster refinement90

of the image details. Previous methods that start directly91

with white noise usually require BN statistics to guide the92

optimization process. In our method, the global structure93

provides a satisfyingly good holistic estimate of the image94

contents, which helps to direct the optimization process.95

We make the following contributions.96

1) We introduce a novel instance reconstruction attack97

method based on a conditional generator, termed CGIR. It98

relaxes the auxiliary assumptions of auxiliary data and BN99

statistics, thus showing a more realistic and broader privacy100

leakage to FL than previous attacks.101

2) We propose a batch label inference attack that al-102

lows multiple images to share the same labels in FL non-103

IID (identically and independently distributed) scenarios.104

Based on the inferred labels, we further introduce a “coarse-105

to-fine” image reconstruction process that can provide a106

stable and effective reconstruction. In addition, we add a107

conditional restriction to the restoration process to keep the108

constructed images always matching their corresponding109

true labels. The consistency of the reconstructed images’110

content and labels further exposes the original data’s sen-111

sitive information.112

3) We evaluate the effectiveness of our CGIR attack on 113

two different network classifiers and five image datasets. 114

Experimental results demonstrate that the CGIR attack is su- 115

perior to prior arts, even for complex datasets, deep models, 116

and large batch sizes. For example, on the CIFAR100 dataset, 117

the CGIR attack can recover a considerable amount (about 118

40%) of the original visual information at a batch size of 168. 119

We also evaluate several existing defenses against privacy 120

breaches. Our experimental results suggest that pruning can 121

be used to mitigate privacy risks in FL when a slight loss of 122

model accuracy can be tolerated. 123

2 PRELIMINARIES 124

2.1 Federated Learning (FL) 125

An FL system coordinates a central server and multiple local 126

clients to execute an iterative optimization procedure of 127

model training. At each iteration, the server first randomly 128

selects n clients and distributes the current joint model f(θ) 129

to them. The selected clients then train the received model 130

based on their local data and upload their model updates to 131

the server. Finally, the server combines these model updates 132

from the clients and changes the model for the next iteration. 133

The iterative interactions between the server and the clients 134

will continue until the model converge [17]. 135

Consider an FL scenario with total clients CN
i=1, where

each client owns data DN
i=1. The global learning objective is

to minimize the weighted average of risks for all clients:

min
θ

F (θ) =

N∑
i=1

|Di|
|D|

Li(θ) (1)

where Li(θ) denotes the local empirical risk of each
client Ci over their data Di:

Li(θ) := Exi∼Di
[l(f(xi; θ), yi)] (2)

l(·) is the loss function used by the local clients for training, 136

such as cross-entropy. After training, the central server can 137

obtain joint model parameters θ that can satisfy the F 138

minimum without obtaining any private training data Di. 139

There are various optimization algorithms proposed for
aggregating local model updates based on client nodes. We
review two mainstream FL architectures: Federated Stochas-
tic Gradient Descent (FedSGD) and Federated Averaging
(FedAvg) based on [18] and [19], respectively. At the tth
iteration, the central server sends the current joint model
M t with the model parameter θt to each of the n chosen
clients. For FedSGD, each client calculates and uploads the
gradient updates gti based on their local data. These gradient
updates are aggregated by the server and are used to change
the global parameter θt+1 by the stochastic gradient descent
(SGD) algorithm with learning rate η:

θt+1 = θt − ηgt, gt =
∑n

i=1

|Di|
|D|

gti (3)

For FedAvg, each chosen client updates θt on their local
data to obtain θt+1

i , and sends the updated parameter back
to the server. The global parameter θt+1 in next iteration
will be calculated as:

θt+1 =
∑n

i=1

|Di|
|D|

θt+1
i (4)
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Note that even though the joint model is computed by140

the updated parameters from the clients, it is still possible141

for an attacker to derive the gradients by using successive142

snapshots of the joint model parameters [7].143

2.2 Privacy Leakage in FL144

Despite that FL avoids clients from disclosing their private145

data directly, recent studies have revealed that sensitive146

information about clients’ private data is still at risk of147

leakage when sharing model updates. Several studies have148

attempted to explain why sharing gradients can cause pri-149

vacy leakage of data [4] [20] [21]. A deep learning model150

can be viewed as a high-dimensional representation of the151

dataset it was trained on. The gradients of a specific layer152

are calculated based on the layer’s features and the loss from153

the layer that follows it [22]. Any effective model may have154

recognized and memorized more data attributes than are155

necessary for the main learning objective, which makes the156

privacy leakage possible [23] [24] [25] [26] [27]. Based on157

the disclosure information, gradient-based privacy inference158

attacks can be broadly categorized as membership inference159

attacks, property inference attacks, and data reconstruction160

attacks.161

The goal of membership inference attacks is to fig-162

ure out whether a specific sample belongs to the training163

data [28] [29] [30] [31] [32] [33]. For example, in a deep nat-164

ural language processing model trained on text input, non-165

zero gradients in the embedding layer can disclose which166

words have been used in the clients’ training batches [7].167

Property inference attacks aim to infer the sensitive privacy168

attributes from the training data, e.g., is the race of the169

training data black.170

Data Reconstruction Attack. The data reconstruction171

attack aims to accurately reconstruct the original training172

samples. Hitaj et al. [9] proposed the first GAN-based data173

inference attack, called DMU-GAN. By exploiting the real-174

time interactivity of FL, DMU-GAN enabled the attacker to175

train a GAN against a specific category of the target training176

set to generate samples that he does not possess. However,177

it assumed that the attacker had auxiliary labels for the178

target data and required less diversity in the training data.179

A follow-up work [10] extended this approach to user-level180

privacy leakage, but still failed to get rid of the auxiliary181

data and merely generated a representation of the original182

data.183

Recent efforts have focused on pixel-level detailed re-184

covery without assuming auxiliary data. The main idea185

is to optimize the “dummy” data (initialized with white186

noise) into real data by minimizing the difference between187

the “dummy” gradient and the real gradient, i.e., gradient188

matching. Deep Leakage from Gradients (DLG) by Zhu et189

al. [11] presented a joint optimization formulation on the190

labels and input data via gradient matching. iDLG [12]191

facilitated the extraction fidelity by simplifying the objective192

function of DLG with the ground truth label computed an-193

alytically from the last layer of shared gradients. However,194

both DLG and iDLG used random noise as the initial point195

of optimization and suffered from poor convergence. This196

may be because the optimization process is unstable when197

the gradient values fluctuate without certain constraints.198

Moreover, these methods have been limited to shallow mod- 199

els and a small batch size of low-resolution image setups of 200

less practical relevance (for a maximum batch size of 8 for 201

DLG and a single label extraction for iDLG). 202

Inverting Gradients (IG) [13] adjusted the DLG’s objec- 203

tive with cosine similarity and added total variation (TV) 204

as a prior regularization, attaining some success in deep 205

models and high-resolution images. GradInversion (GI) [14] 206

introduced batch label restoration and made a breakthrough 207

in larger batch reconstruction by regularizing image fidelity 208

with group consistency. Although these approaches have 209

had some success, they rely on a strong assumption that 210

the attacker knows BN statistics. Relaxing this assumption 211

can substantially reduce the effectiveness of these attacks, as 212

demonstrated in [16]. GGL [15] combines gradient matching 213

with a GAN trained on public datasets. Although the GAN 214

model can help recover images, the reconstructed images 215

are limited by the prior distribution, and thus challenging 216

to reconstruct image samples outside the distribution. 217

Unlike previous end-to-end approaches, we propose a 218

novel three-stage instance reconstruction attack based on 219

a conditional generator, termed CGIR. Specifically, we first 220

employ a generator to capture the global layout of the target 221

images, called coarse-level inference. The encoding capacity 222

of the generator provides a satisfyingly good holistic esti- 223

mate of the image contents, which facilitate the fine-tuning 224

of the following stage. In the fine-level stage, each pixel 225

value of the synthetic image is updated directly, allowing 226

a better and faster refinement of the image details. Note 227

that CGIR drops the previous auxiliary assumptions, i.e., BN 228

statistics and auxiliary data, thus showing a more realistic 229

and broader privacy leakage to FL than previous attacks. 230

2.3 Privacy Defenses in FL 231

Two fundamental strategies to prevent privacy leakage of 232

sensitive data in FL are encryption gradients and Perturbing 233

gradients. 234

Encrypt Gradients. Existing works on encryption for 235

gradients are typically based on previous cryptographic 236

techniques, including Homomorphic Encryption (HE) [34] 237

and Secure Multiparty Computation (SMC) [36]. However, 238

the cryptography operations are not only time-consuming 239

and resource-intensive, but also degrade the model’s ac- 240

curacy [35]. The implementation of SMC involves synchro- 241

nized coordination among workers during training, which 242

requires a high degree of stability in each client’s equip- 243

ment [37] [38] [39]. 244

Perturbing Gradients. Another effective way to reduce 245

private information leakage is to perturb as much of the 246

valid information contained in the gradient as possible with- 247

out affecting the model performance. One straightforward 248

perturbation strategy is gradient compression, where gradi- 249

ents of small magnitude are pruned to zero, such that only a 250

part of local updates will be communicated between devices 251

and the server [11]. Abdelmoniem et al. [40] proposed a 252

threshold-based compression scheme for distributed train- 253

ing systems, which does not affect the model performance 254

even when the pruning ratio is 0.9. The other strategy is 255

adding noise to gradients before sharing, thus confusing 256

the information of the original data. McMahan et al. [41] 257
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Fig. 1. Overview of our proposed CGIR attack. In stage 1, the labels of
target images are inferred by analyzing the gradient sign of the last fully-
connected layer. In stage 2, the generator decodes the global layout
of the target images by matching both gradients and labels between
reconstructed and true images. In stage 3, with the recovered global
structure of the image contents provided by stage 2, a pixel-wise update
is conducted through gradient matching.

proposed to add noise on the server side for LSTM language258

models. This ensures that malicious clients cannot infer or259

attack other benevolent clients. Another approach is for260

clients to add a degree of Gaussian or Laplacian noise261

before sharing their gradients, thus avoiding attacks from262

the malicious server side [11]. However, these techniques263

require a trade-off between defense capability and model264

performance, i.e., if the degree of perturbation to the gra-265

dient is too small, its defense capability will be poor, and266

conversely, the model performance will be compromised.267

3 CGIR ATTACKS268

In this section, we first describe the threat model of our269

CGIR. Then, we present the details of our attack pipeline,270

which consists of three stages: label inference, coarse-level271

inference, and fine-level inference.272

3.1 Threat Model273

Suppose that N local clients (where N ≥ 2) jointly ac-274

complish an FL task (i.e., image classification) under the275

coordination of a central server. The adversary of our CGIR276

attack can be an honest-but-curious server or a malicious277

eavesdropper in the communication channels between the278

clients and the server. We assume one of the clients is the279

victim client.280

Adversary’s goal: The adversary’s primary goal is to281

recover the exact images that the victim possesses. It is a282

passive attack and does not affect the training process of the283

original model.284

Adversary’s knowledge: An adversary is allowed to285

store and process model updates transmitted by individual286

clients separately but will not interfere with the training287

algorithm. Unlike the previous work, we assume that the288

adversary does not access the original data’s BN statistics 289

during training to discuss a more realistic scenario. 290

Adversary’s capabilities: Victims usually do not share 291

the category labels of their uploaded gradients. However, an 292

adversary can restore the ground truth labels by analyzing 293

the gradients of the last fully-connected layer, as discussed 294

in [12] [14]. Based on the prior arts, we further analyzed 295

the label inference capability in the non-IID FL scenarios in 296

Section 3.2.1. 297

3.2 Attack Pipeline 298

In this section, we describe our CGIR framework in detail, 299

which can be roughly divided into three stages. In stage 1, 300

we conduct a label inference attack to get the target images’ 301

corresponding labels by analyzing the sign of the gradients. 302

The inferred labels will be provided as conditional informa- 303

tion to the subsequent image inference. 304

In stage 2, we aim to recover the global layout of the 305

image contents, like shapes or structures of the contents, 306

through a conditional generator. In stage 3, we finely tune 307

each pixel value of the synthetic images based on the holistic 308

estimate of the target image contents. Figure 1 depicts the 309

workflow of our CGIR attack, and the algorithm is summa- 310

rized in Algorithm 1. 311

Algorithm 1 CGIR
Input: differentiable global model f(x; θ), global model

parameters θ, gradients produced by local training data
g, learning rate η, generator G(w), the number of epochs
T1 and T2 for stage 2 and stage 3, total variation function
T V(·), noise z sampling from N (0, 1) as initial random
vector inputs for Generator.

Output: reconstructed data x̂.
1: Stage 1: LABEL INFERENCE
2: y ← analyzing the last layer of g by Algorithm 2
3: Stage 2: COARSE-LEVEL INFERENCE
4: for i=0 to T1 do
5: ĝi ←

∑
l∇θ(l) l(G(z, y;wi), y);

6: ŷi ← fθ(G(z, y;wi));
7: Rtv ← T V(G(z, y;wi));
8: Lsum = αg||ĝi − g||2 + αy||ŷi − y||2 + αtvRtv ;
9: wi+1 ← ŵi − ηLsum;

10: w = wi+1

11: return G(z, y;w) as x̂;
12: Stage 3: FINE-LEVEL INFERENCE
13: for i=0 to T2 do
14: L

′

sum = ||∇θl(f(x̂i; θ), y)− g||2;
15: x̂i+1 ← x̂i − ηL

′

sum;
16: return x̂i+1;

3.2.1 Stage1: Label Inference 312

By analyzing the numerical distribution of the last layer of
gradients, previous studies have demonstrated the feasibil-
ity of recovering labels. Considering a classification model
with C categories, the last layer of the model is usually
a fully connected layer (FC), which can be expressed as
b = θFCr. Where r is the input to the FC layer, θFC is
the weight matrix, and b is the output. Given a batch size B
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of images x = [x1, x2, · · · , xB ], the gradient of the loss l(·)
with respect to θFC is:

gθFC
=

1

B

∑
i

∂li

∂bi
∂bi

∂θFC
=

1

B

∑
i

∂li

∂bi
(ri)T (5)

For each image xi, the ∂li

∂bi = pi,c−yi,c at index c, where pi,c313

is the post-softmax value of model output in range (0, 1),314

and yi,c is the value (0 or 1) of yi at index c. Since the315

previous layer of the FC layer usually contains a common316

activation function (such as ReLU or Sigmoid), (ri)T is317

always non-negative. Therefore, when B = 1, the values318

in θFC are negative only in the row where the ground truth319

label is located, while the values of other rows are positive.320

Zhao et al. [12] revealed this relationship, and presented321

an analytical method to extract the ground-truth label from322

the shared gradients with 100% accuracy. When the data323

distribution of each client in an FL scenario is extreme324

non-IID, i.e., there is only one category for each client, we325

observe that the gradients w.r.t. the last-layer weights also326

follow this rule.327

For multi-sample batch training, the value of θFC is a328

linear summation from all images in this batch. The relation-329

ship between the ground truth labels and the negative sign330

of shared gradients may be diluted when the summation331

brings positive values from other images. Yin et al. [14]332

observed a more robust negative sign of the shared gradi-333

ents for multiple image training. They only utilized the mth334

column where the minimum value of θFC is located, instead335

of all rows of θFC . The indexes of the top-B minimum values336

in column m are the inference labels.337

The top-B minimum in the mth column of the gradi-338

ent matrix θFC may include positive values when there339

are repeating labels in a batch. That is contrary to the340

relationship between labels and signs of gradients. Based341

on this observation, we refine the existing approaches and342

design a batch label restoration method that multiple images343

can share the same labels. Specifically, we first locate the344

column m of θFC and only record the indexes of rows with345

negative values as y. When the number of negative values is346

greater than B, we take top-B indexes as the inferred labels.347

Otherwise, we remove the column m of gθFC
and make the348

updated gθFC
as the new gθFC

. Then, We repeat the first step349

until the length of the inferred y is equal to B. The algorithm350

is summarized in Algorithm 2.351

3.2.2 Stage2: Coarse-level Inference352

After recovering the image’s labels, we utilize a conditional353

generator to capture the global structures of the target354

images. The generator can be seen as a neural network with355

feature extraction capability, which takes random noise and356

inferred labels as model input and outputs the synthetic357

images. The objective function of optimizing the generator’s358

parameters includes 1) the loss of matching the gradients359

and labels between the synthetic and original target images360

and 2) the Total Variance (TV) loss enhancing the stability361

of the optimization process. Minimizing the gradient and362

label differences between the synthetic images and original363

target images aims to enforce the synthetic images close to364

the ground truth. When the optimization finishes, the global365

layout of the image contents, like the shapes and structures366

of the target images, will be covered.367

Algorithm 2 Label Inference
Input: g: the gradients produced by local training data; B:

the number of batch size.
Output: the inferred labels of target images y.

1: get the gθFC
from g

2: b = 0, y = []
3: while b < B do
4: gmθFC

← locate the mth column where the minimum
value of the gθFC

is located.
5: yi ← sort the values of gmθFC

in ascending order and
record the indexes of rows with negative values.

6: Append yi to y.
7: b = b+ len(y)
8: if b > B then
9: y = y[: B]

10: gθFC
← update the gθFC

after removing the mth
column.

Given a batch randomly initialized noise z (z ∈
RB×C×H×W , B, H, W, C being the batch size, height,
width, and image channels) and the inferred labels y. The
optimization goal of stage 2 is illustrated as follows:

min
ŵ
Lg(ĝ, g) + Ly(ŷ, y) +Rtv(G(w; z, y)) (6)

Where g is and gradients of target images; G(w; z, y) are the 368

synthesized images decoded by generator, hereinafter called 369

x̂; ŷ and ĝ are extracted labels and corresponding gradients 370

of the synthesized images x̂; Lg(·) and Ly(·) perform the 371

gradient and label matching for the synthetic and real data; 372

Rtv(·) is an image prior regularization that provides a more 373

stable convergence to this process [42]. 374

For gradient matching, we minimize the ℓ2 distances
between gradients on the ground truth images x and syn-
thesized images x̂:

Lg(ĝ, g) = αg

∑
k||∇θ(k) l(f(x̂; θ), y)− g(k)||2 (7)

Where g(k) and ∇θ(k) l(f(x̂; θ), y) refer to gradients on the
real images and synthesized images at layer k, respectively.
All layers are summed and scaled by αg . For label matching,
we penalize the ℓ2 norm of labels on the real images and the
synthesized images x̂ and scale it with αy :

Ly(ŷ, y) = αy||fθ(x̂)− y||2 (8)

This label restriction ensures that the content and categories 375

of the reconstructed images are consistent. 376

During image restoration, noise may cause gradient
explosion and thus affect the stability of the optimization
process, especially when the gradient value fluctuates dras-
tically. The total variation (TV) loss encourages spatial con-
tinuity and smoothness in the synthetic images by reducing
the difference between adjacent pixel values. The definition
of TV loss is given as follows:

Rtv(x̂) = αtv

∑
i,j((x̂i,j+1 − x̂i,j)

2 + (x̂i+1,j − x̂i,j)
2)

β
2 (9)

Where β can be used to adjust the image continuity. Setting 377

the β to 2 usually gives a good trade-off between image 378

smoothing and preservation of image details, as demon- 379

strated in [42]. We follow the prior work setting the β = 2, 380

the reconstructed images are smoothed enforced by this loss. 381



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Two aspects need to be emphasized: 1) The target of the382

objective function is not the image’s pixels but the gener-383

ator’s parameters. A well-trained generator can provide a384

smooth latent space for image decoding. 2) Compared to the385

standard generator, the generator in our CGIR incorporates386

inferred labels as the condition information, which are also387

added to the objective function as label regularization. This388

label regularization term allows the generator to differenti-389

ate between different image categories, thus ensuring the390

contents and the classes of the reconstructed images are391

consistent.392

3.2.3 Stage3: Fine-level Inference393

With the recovered global structure of the image contents
provided by stage 2, further fine details are completed in the
third stage. In this stage, we conduct a pixel-wise update
by matching the gradients. The objective function can be
defined as follows:

min
x̂

∑
k||∇θ(k) l(f(x̂; θ), y)− g(k)||2 (10)

Stage 3 starts from the image’s global layout obtained in394

stage 2, rather than from noise. The global structure pro-395

vides a satisfyingly holistic estimate of the image contents396

and therefore facilitates the fine-tuning at this stage. In397

addition, each pixel value of the synthetic image is updated398

directly, allowing a better and faster refinement of the image399

details.400

Note that the fine-level stage skips the auxiliary genera-401

tor so that the computational cost is lower than the coarse-402

level stage. But if only the fine-level stage is used, it usually403

causes instability in the model optimization process. There-404

fore, by balancing the scale of these two steps, CGIR attacks405

can further reduce computational costs while maintaining406

good image quality. We will discuss the trade-off between407

these two stages in our ablation study.408

4 EXPERIMENTS409

4.1 Experimental Setup410

Datasets. We evaluate our attack on multiple datasets:411

1) the grayscale handwritten digit images of 28×28px412

(MNIST) [43], 2) the CIFAR10 dataset [44] and CIFAR100413

dataset [45] of 32×32px RGB images, 3) the CalabFaces414

Attributes detaset of 64×64px (CelebA-HQ) [46], and 4)415

the Imagenet dataset of 128×128px [47]. More details of416

these selected datasets are listed in Table 1. For CelebA-HQ417

dataset, we segmented the dataset using male and female418

as category attributes, following [48]. The selected datasets419

differ in sample resolution, size of the dataset (total number420

of samples), and number of categories. This allows us to421

examine the threats posed by attacks in different dataset422

complexity, with the first three low-resolution datasets being423

basic and the remaining two high-resolution datasets being424

complex.425

Models. We adopt two networks as image classifiers426

to discuss privacy risks at varying model complexity. Fol-427

lowing the first gradient-based reconstruction attack (DLG),428

we use the same shallow and smooth LeNetZhu [11] to429

explore the availability of our attack methods. To ensure430

the twice-differentiable of the model, LeNetZhu replaced431

TABLE 1
Dataset characteristics.

Dataset Resolution Size Category
MNIST 28×28×1 60000 10

CIFAR10 32×32×3 60000 10
CIFAR100 32×32×3 60000 10

CelebA-HQ 64×64×3 23705 2
ImageNet 128×128×3 1281167 1000

the activation ReLU with Sigmoid and removed the strides. 432

We then focus on the deep ResNet-18 model as the backbone 433

network to explore the performance of our attack in complex 434

architecture. Since the L-BFGS algorithm requires second- 435

order differentiability, we use the ELU activation function 436

for all attack methods, which can reduce the gradient van- 437

ishing while retaining the ability of non-linearity. 438

The generator of our CGIR is fed with random noise z 439

and the inferred labels y that are extracted by analyzing 440

the last layer of shared gradients. The noise z for the gen- 441

erator is derived from a 128-dimensional standard normal 442

distribution with mean 0 and variance 1. The generator 443

consists of two input embedding layers, followed by a view 444

function to reshape the feature map, where MNIST is set 445

to 7 × 7, and the other datasets are set to 4 × 4. It then 446

goes through several upsampling blocks to improve the 447

spatial resolution of feature maps, as in [48]. Depending 448

on the dataset, the number of upsampling blocks varies. To 449

increase the smoothness of the generated images, we use 450

a Sigmoid activation layer before the model output. In up- 451

sampling block, we test both nearest-neighbor interpolation 452

and ConvTranspose2d to resample the feature map. Both 453

upsampling methods work well with our framework in our 454

experiments, and due to space limitations, we present the 455

experimental results with the first structure. More details 456

about the training models are provided in Appendix A. 457

Implementation Details. An FL system is usually set up 458

with multiple participants with non-IID data distributions. 459

We presume there are 100 clients in total, and 10 of them 460

are selected randomly in each round. Among the selected 461

clients, one of them is the victim. To simulate non-IID data 462

settings, we use a Dirichlet distribution with the haperpa- 463

rameter γ to divide data for different clients. In general, 464

the smaller the value of haperparameter γ, the higher the 465

degree of non-IID distribution of the data. Following [49], 466

we set the γ = 0.9 for our comparison studies. 467

Since the goal of the CGIR attack is instance reconstruc- 468

tion, it is not fair to compare the GAN-based class repre- 469

sentation attack with it. Therefore, our current comparison 470

focuses on iDLG and IG. iDLG applied the ℓ2 cost function 471

with the L-BFGS optimizer, and IG relied on a combination 472

cost function of cosine similarity and TV regularization with 473

the Adam optimizer. The generator in our CGIR framework 474

is trained by RMSprop optimizer with a learning rate of 1e-2 475

and momentum of 0.9. We take the best hyper-parameter of 476

αg = 1, αy = 1e-2 and αtv = 1e-6. 477

Evaluation Metrics We evaluate the quality of the re- 478

constructed images from both qualitative and quantitative 479

perspectives. The visual fidelity of the reconstructed images 480

to the real images can be used as an indicator of perceptible 481

image similarity. The quantitative metrics include: 1) the 482
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Mean Square Error (MSE ↓), 2) the Peak Signal-to-Noise483

Ratio (PSNR ↑), and 3) the Structural Similarity Index Metric484

(SSIM ↑) between real and reconstruction images [50]. (The485

↑ and ↓ correspond to the higher or lower values of the486

corresponding metrics when the constructed image is closer487

to the real image, respectively.)488

MSE represents the mean squared euclidean distance
between the actual and reconstructed images. Given two
images x and y of size m×n, the function of MSE is defined
as:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[x(i, j)− y(i, j)]2 (11)

A lower MSE score indicates a higher similarity between the489

two images.490

PSNR is an objective criterion for evaluating the similar-
ity between a reconstructed image and a real image, which
is defined as the logarithm of the ratio of the maximum
squared value of image fluctuations to the MSE between
two images. The formal definition is given in Equation (12):

PSNR = 10 · log10(
MAX2

I

MSE
) (12)

where MAX2
I denotes the maximum possible pixel value491

of the image. In general, the higher the PSNR value, the492

smaller the distortion between the estimated and the real493

image, and the better the image quality.494

SSIM is to measure the similarities between two images
from the perspective of their composition. Given two images
x and y, the structural similarity of the two images can be
calculated as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(13)

Where µx and µy , σx and σy , and σxy denotes the mean495

values, variance and covariance of x and y, respectively.496

c1 = (k1L)
2 and c2 = (k2L)

2 are constants used to maintain497

stability and L is the dynamic range of the pixel values,498

where k1 = 0.01, k2 = 0.03. The range of structural similar-499

ity is from 0 to 1. When two images are identical, the value500

of SSIM is equal to 1.501

4.2 Comparison Studies502

In this section, we analyze the attack capability of our CGIR503

without BN statistics assumption and compare it with iDLG504

and IG under different task complexities. We first use a505

shallow smoothing model (LeNetZhu) to test the feasibility506

of our CGIR in the single image reconstructions, similar to507

previous studies on privacy breaches in FL settings. In the508

following, we focus on a realistic setup: a deep ResNet-18509

classifier trained with a batch of RGB images. Finally, we510

show the performance of our CGIR attack in recovering a511

large batch of images from their averaged gradients. For all512

the following experiments, we obtain the labels of the target513

images by the label inference method in Section 3.2.1.514

Results on LeNetZhu. We compare the performance of515

different attacks on LeNetZhu using five different datasets516

mentioned above. Since iDLG only supports the reconstruc-517

tion of a single image, we set the batch size to 1. The518

quantitative comparisons are summarized in Table 2, and519

MNIST

CIFAR10

CIFAR100

CelebA-HQ

ImageNet

iDLG IG Our Ground-truth

Fig. 2. Qualitative comparison on LeNetZhu.

the best-performing visualization samples are provided in 520

Figure 2. 521

As shown in Table 2, our CGIR attack is on par with 522

the SOTA methods under the low-resolution datasets. For 523

the MNIST dataset, the mean value of PSNR, SSIM, and 524

MSE metrics for all methods are around 50, 0.99, and less 525

than 0.001, respectively. Our attack method outperforms 526

prior arts by a large margin for complex datasets. The 527

mean values of PSNR and SSIM of CGIR attacks maintain 528

at 32.71 and 0.87, while benchmarks are below 15 and 0.2, 529

respectively. This is because that previous end-to-end bench- 530

marks directly optimize the pixel values of white noise to 531

natural images, which may have difficulty in convergence, 532

especially when the distribution of the images is complex, 533

such as the extremely diverse nature of the image content. 534

Our CGIR combines the stability of global structural opti- 535

mization with the accuracy of local detail fine-tuning and 536

thus can perform well even on complex datasets. 537

From the results presented in Figure 2, we observe that 538

all the attack methods produce identifiable images on the 539

low-resolution dataset. Our method shows more remarkable 540

performance on the CelebA-HQ and Imagenet datasets than 541

the prior arts. Specifically, iDLG does not recover the images 542

at all, and IG shows only some similarity to ground truth 543

images in color distribution and geometry. However, our 544

method still produces high-fidelity images with rich details. 545

These visual results are consistent with the numerical results 546

in Table 2. Therefore, we confirm that the CGIR attacks out- 547

perform the priors under the shallow models, even without 548

auxiliary assumptions. 549

Results on ResNet. We now turn to a more realistic 550

setting: a deep ResNet18 classifier and a batch of RGB 551

images. Since iDLG is limited to shallow networks, we focus 552

on the comparison experiments with IG. Table 3 presents the 553

numerical performance comparisons between CGIR and IG 554

attacks at a batch size of 8. 555

For the basic datasets, our CGIR attack shows a certain 556

advantage regarding the std of image quality statistics, 557

where the std of PSNR is only 0.82 for CIFAR10 and 1.76 558
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TABLE 2
Quantitative comparison on LeNetZhu at batch size 1.

MSE ↓ PSNR ↑ SSIM ↑

iDLG IG CGIR iDLG IG CGIR iDLG IG CGIR
MNIST 1e-3±6e-3 2e-4±4e-4 1e-4±5e-6 49.40±2.10 50.34±1.41 50.52±1.21 0.99±2e-3 0.99±5e-3 0.99±6e-6

CIFAR10 7e-6±2e-6 4e-3±5e-3 5e-4±6e-4 51.52±1.26 28.45±6.93 34.60±4.03 0.99±1.07 0.84±0.15 0.97±0.03
CIFAR100 0.07±0.11 0.01±8e-2 4e-3±2e-4 24.98±8.10 27.8±5.33 29.54±3.23 0.59±0.46 0.76±0.13 0.81±0.01

CelebA 0.05±1e-3 0.05±0.01 0.01±0.01 12.39±0.08 12.45±1.10 28.94±4.12 0.01±0.01 0.15±0.03 0.84±0.31
Imagenet 0.15±0.07 0.08±4e-3 5e-3±1e-3 8.46±1.59 11.61±0.23 32.71±2.81 0.03±0.03 0.01±6e-3 0.87±0.21

TABLE 3
Quantitative comparison on ResNet18 at batch size 8.

Dataset Metric
IG CGIR

Mean Std Mean Std

CIFAR10
MSE ↓ 0.06 0.01 1e-5 4e-6
PSNR↑ 33.36 11.48 44.11 0.82
SSIM↑ 0.78 0.21 0.99 2e-5

CIFAR100
MSE ↓ 0.01 0.01 3e-3 5e-4
PSNR↑ 32.13 6.31 33.92 1.76
SSIM↑ 0.66 0.23 0.99 1e-4

CelebA-HQ
MSE ↓ 0.07 0.02 0.06 0.02
PSNR↑ 11.33 1.64 15.51 2.56
SSIM↑ 0.15 0.06 0.38 0.22

ImageNet
MSE ↓ 0.05 0.02 0.06 0.02
PSNR↑ 12.82 1.93 12.91 2.13
SSIM↑ 0.14 0.07 0.23 0.08

(a) details leakage

(b) gender leakage

Fig. 3. Face details (a) and gender information (b) leakage at batch size
8 on CelebA-HQ. Each pair of comparison images contains an original
sample (left), and a reconstructed image by CGRA (right).

for CIFAR100, while the std of PSNR for IG on CIFAR10559

and CIFAR10 are 11.48 and 6.31, respectively.560

For CelebA-HQ and ImageNet datasets, the performance561

of both CGIR and IG is impaired, but CGIR is still slightly562

better than IG. Figure 3 and Figure 4 present the vary-563

ing degrees of information leakage of our method on the564

CelebA-HQ and Imagenet datasets, respectively. In the case565

of CelebA-HQ, it is possible to identify a person’s gender or566

specific facial features, despite partial location blurring. For567

the more complex ImageNet, the background information568

of the images is leaked. These results highlight the risk of569

data leakage caused by our attack under complex models570

and datasets.571

Large-batch Images Recovery. We now increase the572

batch size to compare the upper limit of the number of573

images recovered by IG and CGIR. For both CIFAR10 and574

CIFAR100 datasets, we test the batch size of 16, 32, 64,575

Fig. 4. Background leakage at batch size 8 on Imagenet. The first row
shows the original images and the second row shows the reconstructed
images by CGRA.

100, 128, and 168. We report the best results for PSNR, 576

SSIM, and MSE between a single reconstructed image and 577

the corresponding real image in different batch sizes, as in 578

Figure 5. More comparisons of reconstruction results are 579

provided in Appendix B. 580

We observe that IG faces difficulties in recovering images 581

when the batch size is 32, as PSNR values are below 25 and 582

SSIM values are below 0.7. However, CGIR, at batch sizes of 583

64 and 168 for CIFAR10 and CIFAR100, respectively, have a 584

PSNR of 30 and an SSIM of 0.9. The visualized attack results 585

show that the number of recognizable images drops as the 586

number of images corresponding to the average gradients 587

increases. Surprisingly, CGIR still restores a decent amount 588

of original visual information at batch size 64 on CIFAR10 589

(about 20%) and batch size 168 on CIFAR100 (about 40%). 590

The entire batch’s reconstruction results are provided in 591

Appendix B. 592

Figure 6 and Figure 7 show a case study of the multi- 593

image recovery of our CGIR attack for CIFAR10 and CI- 594

FAR100 datasets, respectively. As expected, with the in- 595

crease in batch size, the information leakage of a single 596

image can be mitigated to some extent. For the CIFAR10 597

dataset, the MSE values of the reconstructed images in- 598

creased from 4.9e-5 to 6.4e-3, the PSNR values decreased 599

from 43.05 to 21.67, and the SSIM values decreased from 600

0.99 to 0.90 as batch size grew. The CIFAR100 dataset with 601

larger batch sizes shows a similar reconstruction perfor- 602

mance. Therefore, we can confirm that our CGIR attack still 603

poses privacy risks in high-volume image restoration, even 604

without relying on BN statistics. 605

4.3 Ablation Studies 606

In this section, we investigate the effectiveness of the label 607

restriction in the generator and the coarse-to-fine framework 608

of our CGIR attack. We use ResNet18 as the classifier back- 609

bone for all experiments. 610
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Fig. 5. Comparison results of different batch sizes on both CIFAR10 and CIFAR100.

MSE

PSNR

SSIM

1.7e-4

37.66

0.99

1.0e-3

27.76

0.95

3.0e-3

25.68

0.94

Fig. 6. Reconstruction images at different batch sizes on CIFAR10,
where the leftmost image is the ground truth, followed by reconstructed
images at batch size 32, 64 and 100 from left to right.

MSE

PSNR

SSIM

1.0e-4

33.73

0.99

1.0e-3

29.48

0.98

2.0e-3

26.88

0.95

Fig. 7. Reconstruction images at different batch sizes on CIFAR100,
where the leftmost image is the ground truth, followed by reconstructed
images at batch size 100, 128, and 168 from left to right.

4.3.1 Label Restriction611

In the coarse-level stage of CGIR, we equip the generator612

with inferred labels as prior information, which is also613

added to the objective function as label matching loss. In614

this section, we test the reconstruction results of CGIR with615

and without label restrictions. Figure 8 shows a case study of616

the reconstructed images on the CIFAR100 dataset at batch617

size 8. As shown in Figure 8, if the optimization process618

contains label information, the content of the generated619

images is consistent with their labels, and conversely, the620

reconstructed images are disordered. This is because the621

uploaded gradients are averaged over the entire batch of622

images. A batch of N images has N ! different permutations623

with the same batch-averaged gradients. As a result, the624

reconstruction results of multiple images usually cannot cor-625

respond to the labels. However, if the optimization process626

is equipped with label restrictions, the generator can decode627

the images according to the label order, thus ensuring that628

the content of the reconstructed images and the labels are629

consistent. The consistency of the reconstructed images’ con-630

tent and labels further exposes the original data’s sensitive631

information. Note that label matching loss is not required632

in the fine-level stage because the image’s global layout 633

obtained in the coarse-level stage have contained the label 634

information. 635

4.3.2 Coarse-to-fine Balance 636

We now investigate the impact of the coarse-level stage and 637

fine-level stage on the effectiveness of our CGIR attacks. We 638

evaluate the performance of the attack using only the coarse- 639

level stage, only the fine-level stage, and a combination 640

of both in different proportions. Taking CIFAR100 as an 641

example, we set the batch size to 8 and fix the total number 642

of iterations to 300, which is much less than the number of 643

iterations required by the first-order optimization method 644

(e.g., IG). 645

Figure 9 shows the performance of our coarse-to-fine 646

framework in different scale combinations. Where ‘i mse’, 647

‘i psnr’, and ‘i ssim’ denote the difference between the 648

reconstructed images and the original images in terms of 649

different metrics. When only the coarse-level stage is in- 650

cluded, the attack yields an acceptable result with a mean 651

PSNR of 33.53 for the reconstructed images. However, the 652

attack shows the worst performance when only the fine- 653

level stage is included, where the average PSNR value of 654

the images is only 11.91. Surprisingly, by combining these 655

two stages, the PSNR value of the reconstructed image can 656

reach up to 38.54, which exceeds the performance of the 657

attack using only the coarse-level stage. 658

This is because using random noise as the initial point 659

for optimization may lead to gradient explosion or falling 660

into other local extremes, rendering the attack unstable 661

and making it challenging to reconstruct the data points 662

with high precision. Applying a generator first provides a 663

satisfyingly good holistic estimate of the image contents, 664

which facilitates fine-tuning in the following stage. In the 665

fine-level stage, each pixel value of the synthetic image is 666

updated directly, allowing a better and faster refinement 667

of the image details. Therefore, combining the coarse-level 668

and fine-level stages allows for a stable and accurate attack. 669

Note that the fine-level stage skips the auxiliary generator 670

so that the computational cost is lower than the coarse-level 671

stage. Therefore, by balancing the scale of these two steps, 672

CGIR attacks can further reduce computational costs while 673

maintaining good image quality. 674

Figure 10 shows a case study of our CGIR attack with 675

different scales of two stages for CIFAR100 dataset at batch 676
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Fig. 8. Reconstruction images with and without label condition restrictions on the CIFAR100 dataset at batch size 8.
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Fig. 9. Reconstruction under different proportions of the coarse-to-fine
framework with a total number of 300 iterations.

size 8. As we can see, the reconstructed images do not677

contain any useful information but noise, if only the fine-678

level stage is conducted. When only the coarse-level stage679

is provided, the reconstructed images are smooth overall,680

but some texture information is blurred. When these two681

stages are combined, the reconstructed images have more682

texture information (e.g., the brighter feathers of the peacock683

in the 2nd image, or the clearer outline of the boat in the 4th684

image), even though there may be artifact pixels.685

5 ATTACKS UNDER DEFENCE STRATEGIES686

Since encryption-based protection schemes always incur687

extra sophisticated setups and are costly to implement, we688

mainly evaluate the defense strategy of perturbing gradients689

in our experiments. The main purpose of this section is to690

measure the trade-off between the model accuracy and de-691

fendability under existing defense strategies against CGIR692

attacks.693

Following prior study [11], we evaluate our CGIR attacks694

by pruning gradients and adding noise to gradients with695

the same setup. We first test Gaussian and Laplacian noise696

(extensively used in differential privacy researches) distri-697

butions with standard deviation n of 1e-4, 1e-3, 1e-2, 5e-2698

and 1e-1 and center 0. Since the defense capability is less699

dependent on the type of noise [11], due to the limitation700

of space, only the defense results under Gaussian noise are701

TABLE 4
The trade-off between model accuracy and defendability under different

defenses at a batch size of 32.
Noise
scale

Acc/DAcc Defense
Pruning

ratio
Acc/DAcc Defense

1e-4 0.64/0.0027 No 0.2 0.64/0.0011 No
1e-3 0.64/0.0056 No 0.6 0.64/0.0024 No
1e-2 0.53/0.11 No 0.7 0.64/0.0035 No
5e-2 0.14/0.50 Yes 0.8 0.61/0.035 No
1e-1 0.04/0.60 Yes 0.9 0.55/0.095 Yes

shown in this paper. Then, we prune the gradients at ratios 702

p of 0.1 to 0.9. We set the batch size set to 8, 16 and 32, and 703

evaluate our method on CIFAR100 dataset using ResNet-18 704

backbone. 705

Figure 11 shows the reconstructed images of the CGIR 706

attack under two defenses, where for the pruning defense 707

strategy, only results with p of 0.2, 0.6, 0.7, 0.8, and 0.9 708

are shown. We select the same images in different batches 709

for visualization as a comparison. Table 4 shows the trade- 710

off between model accuracy and defensibility for the two 711

defenses with a batch size of 32, where ‘Acc’ represents 712

the model accuracy under the defenses, ‘DAcc’ represents 713

the corresponding decrease in model accuracy, and ‘Yes’ 714

represents it successfully defends against CGIR attack while 715

‘No’ means failure to defend. 716

For the strategy of adding noise to gradients, our recon- 717

structed images are still recognizable even at the standard 718

deviation of noise of 1e-2 (see Table 11). The noisy gradients 719

mitigate information leakage only when the variance is 720

greater than 5e-2. However, in this case, the performance 721

of the global model is severely affected, and the accuracy of 722

the model drops to 0.14 (see Table 4). It suggests that adding 723

noise to the gradient is insufficient to prevent data leaking 724

in practice. 725

For the strategy of pruning gradients, the prune ratio 726

suggested in [11] (20%) fails completely for CGIR attacks. 727

As shown in Figure 11, the reconstructed images become 728

blurred and dark as the pruning ratio increases. However, 729

the reconstructions are still identifiable even at a pruning 730

ratio of 0.9 with batch sizes of 8 and 16. The reconstructed 731

images are almost difficult to identify until at a pruning 732

rate of 0.9 with a batch size of 32. As a trade-off, the model’s 733

accuracy is reduced by about 10% at this point. (see Table 4). 734

It suggests that pruning can be used to mitigate privacy 735

risks in FL when a slight loss of model accuracy can be 736
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Fig. 10. A case study of CGIR attacks for coarse-to-fine balance. The first row shows the reconstruction results for the fine-level stage only. The
second row shows the reconstruction results for the coarse-level stage only. The third row shows the reconstruction results when 200 iterations are
executed in the coarse-level stage, and 100 iterations are executed in the fine-level stage.
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n=1e-4 n=1e-3 n=1e-2 n=5e-2 n=1e-1

Pruning
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Fig. 11. Reconstruction images under different defenses with batch sizes of 8, 16 and 32.

tolerated.737

6 DISCUSSION AND ANALYSIS738

In this section, we discuss the impact of different numbers739

of clients and non-IID data distributions in the FL settings740

on CGIR.741

Number of clients. The key factor in launching a CGIR742

attack is to obtain the gradients uploaded by the victim743

client in a training round. An adversary can steal the744

victim’s gradients, whether he is an honest but curious745

server or a malicious eavesdropper, and this procedure is746

independent of the number of clients. When the number747

of clients is 2, the adversary can also be one of the clients748

while the other is the victim. In this case, the adversary749

can save the snapshots of the joint model parameters. The750

difference between the consecutive snapshots is equal to the751

aggregated gradients from all participants. The adversary752

thus can subtract his own gradients from the aggregated753

gradients to get the victim’s gradients. Without loss of754

generality, we focus on the case where the server or the755

eavesdropper is the adversary, and the number of clients756

does not affect the experimental results.757

non-IID data distributions. The different non-IID data758

distributions is an important setting in the FL scenarios. We759

now investigate whether CGIR can still achieve good recon-760

struction performance when the Dirichlet haperparameter761

is raised to 1.5. We use ResNet-18 as the classifier backbone762

with both CIFAR10 and CIAFR100 datasets. Table 5 depicts763

TABLE 5
Quantitative comparison in different non-IID settings with Dirichlet

haperparameter γ = 0.9 and γ = 1.5.

Dataset
Batch
size

MSE↓ PSNR↑ SSIM↑
0.9 1.5 0.9 1.5 0.9 1.5

CIFAR10
8 1e-5 1e-5 44.11 45.34 0.99 0.99
16 2e-4 5e-4 35.82 33.76 0.99 0.99

CIFAR100
8 2e-4 2e-4 33.92 34.02 0.99 0.99
16 2e-4 2e-4 35.55 36.53 0.99 0.99

the results of CGIR with batch sizes of 8 and 16. As we can 764

see, CGIR behaves similarly at different Dirichlet parame- 765

ters of 0.9 and 1.5, where the difference between the values 766

of PSNR is around 1 and the values of MSE and SSIM are 767

almost the same. Therefore, CGIR exhibits practicability and 768

robustness when attacking FL. 769

7 CONCLUSION 770

FL is a distributed learning paradigm that brings privacy 771

benefits to users and drives the growth and deployment of 772

artificial intelligence. However, there are still privacy risks 773

of data leakage in the FL training process. Although the 774

existing data reconstruction attacks have shown some effec- 775

tive performance, they make different assumptions about 776

the settings. In this paper, we relax these assumptions and 777

propose a conditional generative instance reconstruction 778

attack, termed CGIR, which presents a more realistic and 779
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broader privacy leakage to FL than previous attacks. Experi-780

mental results show that our CGIR attack is superior to prior781

arts, even for complicated datasets, deep models, and large782

batch sizes. In addition, the reconstructed images always783

match their corresponding real labels with label condition784

restriction, which further exposes the reconstructed data’s785

sensitive information. We also evaluate several existing786

defenses and find that the effectiveness of current defense787

methods is based on the compromise of model accuracy.788
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TABLE 6
The architecture of generator in CGIR attack for MNIST and CIFAR10.

Layer
MNIST CIFAR10 / CIFAR100

Filter/Stride Resample BN Output Size Filter/Stride Resample BN Output Size

Linear/View - - - 128*7*7 - - - 128*4*4

Conv/GLU 3*3/1 Up Y 64*14*14 3*3/1 Up Y 64*8*8

Conv/GLU 3*3/1 Up Y 32*28*28 3*3/1 Up Y 32*16*16

Conv/Softmax 3*3/1 - - 1*28*28 3*3/1 UP Y 3*32*32

APPENDIX A1045

The architectures of generator for MNIST, CIFAR10 and1046

CIFAR100 are provided in Table 6, where ’Y’ indicates the1047

layer is followed by a BN layer. The architecture of the1048

generator for CelebA-HQ and ImageNet datasets is similar1049

to that of CIFAR10 and CIFAR100, except that the number1050

of upsampling blocks is increased accordingly.1051

APPENDIX B1052

IG

CGIR

Fig. 12. Comparison results on CIFAR10 with batch size 16.

Fig. 13. CGIR attack on CIFAR10 with batch size 64.

IG

CGIR

Fig. 14. Comparison results on CIFAR100 with batch size 16.

Fig. 15. CGIR attack on CIFAR100 with batch size 168.
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