基本信息
办公电话:+86 13051002020 |
电子邮件: boqiao@bjtu.edu.cn |
通讯地址:北京市海淀区上园村3号 |
邮编:100044 |
教育背景
-
2012-2015: 博士,图卢兹大学,图卢兹,法国,导师:Gilbert Teyssedre, Christian Laurent (IEEE Fellow)
-
2010-2012: 硕士,北京交通大学,北京,中国,导师:徐叙瑢院士
-
2006-2010: 学士,北京交通大学,北京,中国
工作经历
科研项目
- 自然科学横向项目: OLED材料性能模型及新材料设计, 2024-2027
- 国家重点研发计划-任务: 印刷 OLED/QLED 柔性显示应用示范, 2023-2026
- 科研专项: 新型纳米像元场致发光显示器件, 2024-2026
- 国家重点研发计划-任务: 柔性OLED光医疗材料及器件研究和应用, 2024-2027
- 国家重点研发计划-任务: 新型柔性传感于光感应显示微系统, 2023-2026
- 自然科学横向项目: 高性能OLED材料开发及器件性能研究, 2022-2024
- 重点资助项目: 影响OLEDs材料发光动力学过程的关键因素及发光效率模型, 2022-2025
- 国家重点研发计划-课题: 纳米像元场致发光器件结构设计和发光机理, 2021-2024
- 自然科学横向项目: 光刻量子点技术合作开发合同, 2022-2025
- 基础研究项目: 铅卤钙钛矿纳米晶电老化影响机制研究, 2021-2023
- 自然科学横向项目: 电致变色玻璃研发5, 2020-2023
- 北京市科委: 基于荧光编码上转换发光纳米材料的多重均相免疫检测技术研究与食品安全检测应用, 2019-2021
- 自然科学横向项目: 绿光双主体及新型OLED材料的开发, 2019-2026
- 自然科学横向项目: 电致变色玻璃研发4, 2019-2023
- 其他部市(2020.10起仅限省部级科技计划\基金\专项): 高效单晶PERC光伏组件数字化车间, 2016-2022
- 自然科学横向项目: 电致变色玻璃研发3, 2018-2023
- 科技部: 印刷OLED显示器件与制程工艺研究, 2017-2022
- 自然科学横向项目: 无镉卤素钙钛矿量子点材料开发, 2017-2023
- 基本科研业务费自然科学类型项目: 有机光电子材料性质和器件稳定性研究, 2017-2018
- 自然科学类人才基金项目: 无机钙钛矿纳米晶及其发光稳定性研究, 2017-2019
- 国家自然科学基金"青年基金": 有机电致发光器件界面电荷存储对电老化的影响及其应用, 2018-2020
- 国家自然科学基金“面上”: 有机金属卤素钙钛矿发光二极管老化机制研究及器件优化, 2018-2021
- 重点资助项目: 新型光电材料与器件研究, 2017-2019
- 国家重点研发计划: 印刷OLED显示材料产业化关键技术机器应用示范, 2016-2020
- 自然科学横向项目: 电致变色玻璃研发2, 2017-2020
- 自然科学横向项目: 清洁能源海上风电用干式变压器技术研发, 2016-2019
- 自然科学横向项目: 平板显示前沿技术工艺开发平台及验证测试环境, 2016-2017
- 基础研究项目: 无机钙钛矿量子点的制备及其电致发光 , 2016-2017
教学工作
本科生课程
-
Solid Nano Materials and Devices
-
Physics for Scientists and Engineers with Modern Physics
研究生课程
论文/期刊
1. M. Zhu et al., Organic ammonium salt assisted crystallization and defect passivation of a quasi-two-dimensional pure blue perovskite at the buried interface. Phys. Chem. Chem. Phys. 26, 21147-21154 (2024).
2. Z. B. Zhao et al., High Brightness Electroluminescence of Non-Carrier-Injection QLEDs with Precise Layer Processing by Spontaneous Spreading Method. Adv Mater Interfaces 11, (2024).
3. Y. Y. Yao et al., AC-driven QLED based on far-field effect of Au NPs. Synthetic Metals 309, (2024).
4. H. X. Teng et al., Self-Driven Perovskite/Organic Quasi-Tandem Photodetectors Operating in Both Narrowband and Broadband Regimes. Acs Applied Materials & Interfaces 16, 51212-51220 (2024).
5. Y. M. Shi et al., Identifying the Quantitative Relationship Between the Molecular Structure and the Horizontal Transition Dipole Orientation of TADF Emitters. Advanced Optical Materials 12, (2024).
6. Y. M. Shi et al., Machine Learning-Driven Precise Design of Stable OLED Materials: Predicting and Enhancing Multi-State C-N Bond Dissociation Energies. Chem. Eng. J. 500, (2024).
7. H. C. Shi et al., Machine learning-enabled discovery of multi-resonance TADF molecules: Unraveling PLQY predictions from molecular structures. Chem. Eng. J. 494, (2024).
8. G. Q. Ma et al., Buffering Donor Shuttles in Proton-Coupled Electron Transfer Kinetics for Electrochemical Hydrogenation of Hydroxyacetone to Propylene Glycol. Journal of the American Chemical Society 146, 23194-23204 (2024).
9. G. Q. Ma et al., Electrokinetic Analyses Uncover the Rate-Determining Step of Biomass-Derived Monosaccharide Electroreduction on Copper. Angew Chem Int Edit, (2024).
10. H. Liu et al., Carrier Generation and Recombination in AC-QLEDs with a Synergistic Capacitance Effect of ZnO/PVDF Heterofunction Layers. Journal of Physical Chemistry Letters 15, 10873-10880 (2024).
11. N. Jiang et al., Defects in lead halide perovskite light-emitting diodes under electric field: from behavior to passivation strategies. Nanoscale 16, 3838-3880 (2024).
12. Y. Zhang et al., Quasi-Tandem Photodetector with Tunable Narrowband Response and Submicrosecond Response Time: Charge-Selected Transmitting Narrowing. Acs Photonics, (2023).
13. H. C. Shi et al., Identifying Molecular Structure-Energy Level Quantitative Relationship of Thermally Activated Delayed Fluorescence Materials Using Machine Learning. Journal of Physical Chemistry C 127, 23526-23535 (2023).
14. N. Meng et al., Increasing the wettability and reducing excess PbI
using diamine hydrobromides with different lengths at the buried interface of the 3D perovskite film. Journal of Materials Chemistry C 11, 15959-15966 (2023).
15. Y. Lu et al., Predicting the device performance of the perovskite solar cells from the experimental parameters through machine learning of existing experimental results. Journal of Energy Chemistry 77, 200-208 (2023).
16. W. Liu et al., Machine learning enables intelligent screening of interface materials towards minimizing voltage losses for p-i-n type perovskite solar cells. Journal of Energy Chemistry 83, 128-137 (2023).
17. X. Y. Li et al., Origins of the improved device performance in solution-processed TADF organic light-emitting devices with a polymer underneath layer. Org. Electron. 121, (2023).
18. H. Li et al., Stability and Degradation in Lead Halide Perovskite Nanocrystals via Regulation of Lattice Strain. J Phys Chem Lett, 5481-5488 (2023).
19. X. M. Huo et al., Nonpolar and Ultra-long-chain Ligand to Modify the Perovskite Interface toward High-Efficiency and Stable Wide Bandgap Perovskite Solar Cells. Acs Appl Energ Mater 6, 1731-1740 (2023).
20. M. Hu et al., Modulation Phase Distribution of Ruddlesden–Popper Quasi-2D Perovskites with a Similarly Spaced Dion–Jacobson Phase. ACS Applied Materials & Interfaces 15, 42706-42716 (2023).
21. Z. Zhao et al., Highly Efficient Solution-Processed Deep Blue Organic Light-Emitting Diodes with an External Quantum Efficiency of 17.2% Alleviate the Hole Accumulation with a Modifying Layer Prepared by the Spontaneous Spreading Method. The Journal of Physical Chemistry C 126, 18972-18979 (2022).
22. Y. Zhang et al., High-Performance MAPbI(3)/PM6:Y6 Perovskite/Organic Hybrid Photodetectors with a Broadband Response. Advanced Optical Materials 10, (2022).
23. W. Wang et al., Predicting the photon energy of quasi-2D lead halide perovskites from the precursor composition through machine learning. Nanoscale Adv 4, 1632-1638 (2022).
24. H. Shi et al., Key Factors Governing the External Quantum Efficiency of Thermally Activated Delayed Fluorescence Organic Light-Emitting Devices: Evidence from Machine Learning. ACS Omega 7, 7893-7900 (2022).
25. Z. Shen et al., Stable and Efficient Red-Emitting Perovskite Cross-Shaped Nanoplates. J Phys Chem Lett 13, 1506-1511 (2022).
26. Q. Y. Qiao et al., Synergistic effect of multidentate ligands on CsPbI3 perovskite nanocrystals surface for high efficiency deep red light-emitting diode. Org. Electron. 107, (2022).
27. M. M. Lv et al., Interfacial Exciplex Host to Release Interfacial Accumulated Charges for Highly Efficient and Bright Solution-Processed White Organic Light-Emitting Diodes. Adv Mater Interfaces 9, 2200093 (2022).
28. M. Lv et al., Interfacial Exciplex Host to Release Interfacial Accumulated Charges for Highly Efficient and Bright Solution‐Processed White Organic Light‐Emitting Diodes (Adv. Mater. Interfaces 22/2022). Adv Mater Interfaces 9, 2270121 (2022).
29. Y. Lu et al., Device performance improvements in all-inorganic perovskite light-emitting diodes: the role of binary ammonium cation terminals. Phys. Chem. Chem. Phys. 24, 6208-6214 (2022).
30. W. Liu et al., Screening interface passivation materials intelligently through machine learning for highly efficient perovskite solar cells. Journal of Materials Chemistry A 10, 17782-17789 (2022).
31. Y. Q. Li et al., Modification of PEDOT: PSS to enhance device efficiency and stability of the Quasi-2D perovskite light-emitting diodes. Org. Electron. 108, (2022).
32. X. M. Huo et al., Suppressed Halide Segregation and Defects in Wide Bandgap Perovskite Solar Cells Enabled by Doping Organic Bromide Salt with Moderate Chain Length. Journal of Physical Chemistry C 126, 1711-1720 (2022).
33. X. Huang et al., Improved phase purity and film quality in quasi-2D perovskite light-emitting diodes by an additive with the trimethacrylate group. RSC Adv 12, 3081-3089 (2022).
34. J. Dong et al., Crystallization regulation and protection of quasi-2D perovskite film by copolymer to enhance the stability of perovskite light-emitting diodes. Journal of Materials Chemistry C 10, 11258-11265 (2022).
35. C. Y. Cao et al., Regulation of energy band and luminescence properties in blue quasi-2D lead bromide perovskite via lattice strain. Applied Physics Letters 120, 172101 (2022).
36. W. Zheng et al., Performance improvements in all-solution processed inverted QLEDs realized by inserting an electron blocking layer. Nanotechnology 32, (2021).
37. Y. Zhang et al., High-Performance Near-Infrared Photodetectors Based on the Synergy Effect of Short Wavelength Light Filter and Long Wavelength Response of a Perovskite/Polymer Hybrid Structure. ACS Appl Mater Interfaces 13, 61818-61826 (2021).
38. Q. Zhang et al., The recombination zone adjusted by the gradient doping of TPA-DCPP for efficient and stable deep red organic light emitting diodes. RSC Adv 11, 24436-24442 (2021).
39. A. Maqsood et al., Organic Halide PEACl for Surface Passivation and Defects Suppression in Perovskite Solar Cells. Acs Appl Energ Mater 4, 12411-12420 (2021).
40. J. F. Chen et al., Highly efficient all-solution processed blue quantum dot light-emitting diodes based on balanced charge injection achieved by double hole transport layers. Org. Electron. 94, (2021).
专著/译著
-
《基于上转换发光技术的快速检测技术:原理与应用》,科学出版社,2023
-
Crosslinkable Polyethylene Based Blends and Nanocomposites, Springer, 2021
-
Principles and Applications of Up-converting Phosphor Technology, Springer, 2019
专利
中国发明专利
-
铜铟镓硒电池及其制造方法,ZL202110805785.X
-
介孔钙钛矿薄膜的制备方法,ZL202111655211.5
-
一种窄带光电探测器及其制备方法,ZL201910575173.9
-
铅卤钙钛矿量子点材料的制备方法,ZL201710348992.0
-
铅卤钙钛矿量子点材料的阳离子交换的实现方法,ZL201710348984.6
-
一种电致发光器件及其制备方法、显示面板、显示装置,CN201711349428.7
-
太阳能电池的起电时间参数的测量方法,ZL201710833625.X
国际(美国)发明专利
-
Electroluminescent device and preparation method therefor, display panel and display apparatus,PCT/CN2018/107920
软件著作权
社会兼职