姓 名: |
杨燕燕 |
|
职 务: |
|
|
职 称: |
副教授 |
|
学 历: |
|
|
学 位: |
博士 |
|
通信地址: |
北京市海淀区上园村3号 |
|
邮 编: |
100044 |
|
办公电话: |
|
|
电子邮箱: |
2015.10-2016.10,英国Ulster大学,计算机工程学院人工智能实验室,联合培养博士生(国家公派) 2013.9-2017.6, 华北电力大学, 控制与计算机工程学院,博士(导师:陈德刚教授)
|
2019.9-至今,北京交通大学,软件学院 2017.9-2019.9,清华大学,自动化系/工业智能与系统研究所,博士后(合作导师:宋士吉教授)
|
机器学习与深度学习:弱监督学习、图机器学习、特征表示学习、增量学习等 不确定性信息处理:粒计算、粗糙集、模糊集 |
|
|
国家重点研发计划-任务,高精度线光谱共焦传感器研制,2022.12-2025.11 国家自然科学基金面上项目,面向动态开放环境的模糊粗糙集关键技术研究,2023.1-2026.12 国家自然科学基金重点项目,基于多专业协同的高铁运行智能优化调度理论与在线策略调整学习方法,2020.1-2024.12 国家自然科学基金青年基金项目,面向多模态数据的粗糙集特征选择及其增量算法研究,2019.1-2020.12 国家重点研发计划-任务,面向大规模定制生成的网络化协同制造支撑软件及工具集研发,2019.6-2022.5 中国博士后基金面上资助项目,面向大数据的多输出支持向量回归及其在线算法研究,2018.5-2019.9 北京交通大学人才基金,基于模糊粗糙集的多标记学习算法研究,2019.10-2022.3 科技部重点研发专项课题,轨道交通系统状态信息实时获取、监测、融合与处理技术,2016.07-2020.06 国家自然科学基金面上项目,基于相关性的大数据分类理论与方法研究,2015.01-2018.12
|
本科生课程:《离散数学》 研究生课程:《机器学习》、《深度学习原理与应用》 |
代表性论文 (where * represents corresponding authors):
[1] Yanyan Yang*, Degang Chen, Zhenyan Ji, Xiao Zhang, Lianjie Dong. A two-way
accelerator for feature selection using a monotonic fuzzy conditional
entropy[J]. Fuzzy Sets and Systems, Online, DOI: 10.1016/j.fss.2024.108916 (中科院一区) [3] Zhenyan Ji, Deyan Kong, Yanyan Yang, et al, ASSL-HGAT: Active Semi-Supervised Learning Empowered Heterogeneous Graph Attention Network, Knowledge Based Systems, Online, https://doi.org/10.1016/j.knosys.2024.111567 (中科院一区) [4] Xiao Zhang, Changlin Mei, Jinhai Li, Yanyan Yang, Ting Qian. Instance and feature selection using fuzzy rough sets: a bi-selection approach for data reduction [J]. IEEE Transactions on Fuzzy Systems, 2023, 31(6): 1981-1994. (An1, 影响因子:12.253) [5]Yanyan Yang*, Degang Chen, Xiao Zhang, Zhenyan Ji, Yingjun Zhang, Incremental feature selection by sample selection and feature-based accelerator, Applied Soft Computing, 121(2022): 1-16. (An 2, 影响因子:8.263) [6] Yanyan Yang*, Degang Chen, Xiao Zhang, Zhenyan Ji, Covering rough set-based incremental feature selection for mixed decision system, Soft Computing, 26 (6) (2022): 2651-2669. (An 3, 影响因子:3.732) [7] 李懿恒(本科生),杜晨曦(本科生),杨燕燕*,李翔宇,基于伪标签一致度的不平衡数据特征选择算法,计算机应用,42 (2) (2022): 475-484. (CCF C,指导北京市级本科大创成果) [8] Yanyan Yang*, Shiji Song, Degang Chen, Xiao Zhang, Discernible neighborhood counting based incremental feature selection for heterogeneous data, International Journal of Machine Learning and Cybernetics, 11(5)(2020): 1115-1127. (An3,影响因子:4.377) [9] Xiao Zhang, Changlin Mei, Degang Chen, Yanyan Yang, Jinhai Li, Active incremental feature selection using a fuzzy-rough-set-based information entropy, IEEE Transactions on Fuzzy Systems, 28(5)(2020): 901-915. (An 1,影响因子:12.253) [10] Yanyan Yang*, Degang Chen, Hui Wang, Xizhao Wang, Incremental perspective for feature selection based on fuzzy rough sets, IEEE Transactions on Fuzzy Systems 26(3)(2018): 1257-1273. (An 1, 影响因子:12.253) [11] Xiao Zhang, Changlin Mei, Degang Chen, Yanyan Yang, A fuzzy rough set-based feature selection method using representative instances, Knowledge-Based Systems, 151 (2018): 216-229. (An 2, 影响因子:8.139) [12] Yanyan Yang*, Degang Chen, Hui Wang, Active sample selection based incremental algorithm for attribute reduction with rough sets, IEEE Transactions on Fuzzy Systems 25(4)(2017): 825-838. (An 1, 影响因子:12.253) [13] Yanyan Yang*, Degang Chen, Hui Wang, Eric C.C. Tsang, Deli Zhang, Fuzzy rough set based incremental attribute reduction from dynamic data with sample arriving, Fuzzy Sets and Systems 312(2017): 66-86. (An 2, 影响因子:4.462) [14] Degang Chen, Yanyan Yang*, Ze Dong, An incremental algorithm for attribute reduction with variable precision rough sets, Applied Soft Computing 45(2016): 129-149. (An 2, 影响因子:8.263) [15] Yanyan Yang*, Degang Chen, Ze Dong, Novel algorithm of attribute reduction with variable precision rough set model, Neurocomputing 139(2014): 336-344. (An 2, 影响因子:5.779) [16] Degang Chen,Yanyan Yang*, Attribute reduction for heterogeneous data based on the combination of classical and fuzzy rough set models, IEEE Transactions on Fuzzy Systems 22(5)(2014): 1325-1334. (An 1, 影响因子:12.253) [17] Ze Dong, Ming Sun, Yanyan Yang*, Fast algorithms of attribute reduction for covering decision systems with minimal elements in discernibility matrix, International Journal of Machine Learning and Cybernetics 7(2)(2016): 297-310. (An3,影响因子:4.377) [18] Yanyan Yang*, Degang Chen, Ze Dong, Novel multi-output support vector regression model via double regularization, 2015 IEEE Conference on Systems, Man, and Cybernetics. (CCF-C)
|
|
2017.7,北京市优秀毕业生 2018.4,华北电力大学优秀博士学位论文 |
1. 中国人工智能学会粒计算与知识发现专委会委员 2. IEEE Transactions on Fuzzy Systems,IEEE Transactions on Cybernetics,Fuzzy Sets and Systems,Information Sciences, Knowledge-Based Systems,Applied Soft Computing, Experts Systems with Applications, International Journal of Machine Learning and Cybernetics等国际期刊的审稿人。
|