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1

Introduction

Cooperative game theory

Game theory uses mathematical models to explore situations with conflict and co-
operation between decision makers (players). The seminal book “Theory of Games
and Economic Behavior” by von Neumann and Morgenstern (1944) is considered as a
milestone of the modern theory of games. In this book, two fundamentally different
approaches are distinguished to analyze potentially complex patterns of strategic
behavior. The first approach is known as non-cooperative game theory and targets
the interactions between players that result from their chosen strategies. The second
approach is known as cooperative game theory and targets interactions caused by
cooperation in which players can make fully binding and enforceable agreements.

Instead of modelling explicitly the actions that players must take to carry out
these agreements, a cooperative game is an austere model derived from strategic
situations in which the opportunities available to each coalition of players could be
described by a single number. These numbers can be considered as a joint utility or
payoff for the players in the coalitions. The assumption that the utility transfers are
possible among the players leads to the class of cooperative games with transferable
utility, abbreviated as TU-games. Formally, a TU-game consists of a set of players
and a characteristic function that specifies a worth to each coalition of players. As
stated by Roth (1988), although these simplifying assumptions are obviously sub-
stantial, the TU-game model has proved to be surprisingly useful as a simple model
of strategic interaction. In cooperative game theory, an essential issue is to build
a universal value (or solution) concept that describes the distribution of the attain-
able gains among the cooperating players in a reasonable way for every game. The
problem arises of “How? What formula or procedure should we use? On what principles
should we base their evaluation?” (Hokari and Thomson, 2015). Unlike the Nash equi-
librium (Nash, 1950) in non-cooperative game theory, no value concept has emerged
as a leading notion in cooperative game theory that would satisfy everyone’s pref-
erences. It, in some sense, makes this field more fascinating.

Values for TU-games are usually supported by axiomatizations or axiomatic char-
acterizations. Axiomatization consists of two steps: first, formulate desirable prop-
erties of values, as axioms; second, identify the values satisfying the properties in
various combinations. This normative method for TU-games has been pioneered
by Shapley (1953a), who axiomatically introduced the Shapley value by efficiency,
additivity, symmetry, and the null player property.
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Fairness: equality and proportionality

Justice is blind, and fairness requires anonymous rules of arbitration (Moulin, 2004).
Typically, fairness does not receive a unique interpretation in allocation problems,
we refer to Young (1995), Brams and Taylor (1996), Moulin (2004), Feldman and
Serrano (2006), Fleurbaey (2008), Hougaard (2009), Fleurbaey and Maniquet (2011),
Thomson (2011b), Kaufman (2018), and Thomson (2019). Consequently, the theory
of fair allocation aims to investigate possible ways of capturing intuitions of fairness,
formulate axioms that encapsulate these intuitions, and identify allocation rules that
satisfy the axioms.

As stated by Young (1995), the oldest and most prominent in discussions about
distributive fairness is Aristotle’s celebrated maxim, which says “Equals should be
treated equally, unequals unequally, in proportion to relevant similarities and differ-
ences” (Nicomachean Ethics). Two alloction principles are deciphered: equal treat-
ment of equals and unequal treatment of unequals. Equal treatment of equals is an equality
principle, which states that if two players have identical characteristics in the allo-
cation problem at hand, they should receive the same treatment. Unequal treatment
of unequals, by contrast, is a proportionality principle, which asserts that the total
worth sould be divided in proportion to each player’s contribution. The former is
a clear-cut principle, whereas the latter is a vague principle since in some situations
the measure of contribution is not clear.

Equality and proportionality are often taken as notions of fairness in the value
theory for TU-games. This even can be reflected by the Shapley value (Shapley,
1953a) and the weighted Shapley value (Shapley, 1953b). The Shapley value allocates
the Harsanyi dividends (Harsanyi, 1959) equally among all players in a coalition.
The idea of equality is also captured by symmetry (also known as equal treatment of
equals in Hart (1990)), one of its standard axioms, which states that identical players
have equal payoffs. In contrast, the weighted Shapley value allocates the Harsanyi
dividends proportionally to the exogenous weights of players among all players
in a coalition. Characterizing the weighted Shapley value, various proportionality
axioms were introduced by modifying the symmetry axiom, we refer to Kalai and
Samet (1987), Chun (1991), Nowak and Radzik (1995), Casajus (2018), and Casajus
(2019).

In fact, equality and proportionality are notions that play a prominent role in al-
most all branches of the theory of economic justice. In some resource allocation prob-
lems that are closely related to TU-games, in particular bankruptcy problems and
claims problems, proportionality seems more appropriate and is widely accepted.
The seminal work was done by O’Neill (1982), who takes an axiomatic approach to
the proportional rule of the bankruptcy problems in which agents have claims on
the estate of a single bankrupt agent. Subsequently, notable axiomatizations of the
proportional rule for bankruptcy problems are given by, e.g. Young (1988), Chun
(1988), Ju et al. (2007a), Moreno-Ternero (2006), Giménez-Gómez and Peris (2014),
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and Flores-Szwagrzak et al. (2020). Some related works also have been done. For ex-
ample, Young (1987) studies a class of (symmetric and asymmetric) parametric rules
for claims problems, and this class includes the equal and proportional rules; Moulin
(1991) discusses the equal and proportional solutions for the surplus-sharing prob-
lems; Moulin (2016) considers proportional assignment and rationing of goods with
different characteristic; Izquierdo and Timoner (2019) study the proportional rule
for decentralized rationing problems in which the resource is not directly assigned
to agents, but first allocated to groups of agents and then divided among their mem-
bers; Ghamami and Glasserman (2019) analyze the optimal allocation of trades to
portfolios when the cost associated with an allocation is proportional to each portfo-
lio’s risk; Eisenberg and Noe (2001) extend the proportional rule for claims problems
to the set-up of financial networks; Csóka and Herings (2021) firstly provide an ax-
iomatization of the proportional rule in financial networks; Leshno and Strack (2020)
characterize the proportional rule for a decentralized network of anonymous com-
puters.

Despite their auspicious beginnings and flourishing in allocation problems, pro-
portionality has been used far less than equality as an established principle in TU-
games. This imbalance may seem strange. Why? Perhaps one answer is that pro-
portionality is much less obvious in TU-games. Moreover, proportionality is trans-
lated into mathematical requirements sensibly depending on the specifications of
the problem at work.

Recently, there has been a growing body of the literature on proportionality
in TU-games. Various proportional values have been considered. Some are de-
fined naturally associating with the exogenous weights of players, we refer to the
weighted division value (Béal et al., 2016b), the weighted surplus division value
(Calleja and Llerena, 2017; Calleja and Llerena, 2019), and the weighted ENSC value
(Hou et al., 2019). Others are introduced based on characteristics of TU-games, we
refer to the proportional value (Ortmann, 2000; Khmelnitskaya and Driessen, 2003;
Kamijo and Kongo, 2015), the proper Shapley values (Vorob’ev and Liapunov, 1998;
van den Brink et al., 2015; van den Brink et al., 2020), the proportional Shapley value
(Béal et al., 2018; Besner, 2019), and the proportional Harsanyi solution (Besner,
2020).

This thesis mainly studies values based on the proportionality principles in TU-
games, and also compares and combines them with the equality principles. An
overview of each chapter of the thesis is explained in the next section.

Overview of the thesis

The main contribution of this thesis is to provide axiomatizations of proportional
values for TU-games. The thesis contains six chapters. Chapter 1 gives an introduc-
tion to the main concepts, definitions, and notation about TU-games. The chapters
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2–5 aim at providing new values for some classes of TU-games, and then charac-
terizing those proposed values. Chapter 6 is devoted to axiomatizing a known and
related family of egalitarian values for TU-games.

In Chapter 2, we present axiomatic characterizations of the proportional division
(PD) value for TU-games, which allocates the worth of the grand coalition in pro-
portion to the stand-alone worths of players. First, a new proportionality principle,
called proportional-balanced treatment, is introduced by strengthening Shapley’s sym-
metry axiom, which states that if two players make the same contribution to any
nonempty coalition, then they receive amounts in proportion to their stand-alone
worths. We characterize the family of values satisfying efficiency, weak linearity,
and proportional-balanced treatment. We also show that this family is incompati-
ble with the dummy player property. However, we show that the PD value is the
unique value in this family that satisfies the dummifying player property. Second,
we propose three appropriate monotonicity axioms by considering two games in
which the stand-alone worths of all players are equal or in the same proportion to
each other, and obtain three axiomatizations of the PD value without both weak
linearity and the dummifying player property. Third, from the perspective of a vari-
able player set, we show that the PD value is the only one that satisfies proportional
standardness and projection consistency. Finally, we provide characterizations of
proportional standardness.

Chapter 3 studies the implications of extending the balanced cost reduction prop-
erty from queueing problems1 to general TU-games. For queueing problems, bal-
anced cost reduction together with efficiency and Pareto indifference characterize the min-
imal transfer rule, being one of the most popular values for queueing problems, which
is obtained by applying the Shapley value to an associated TU-game. Since queueing
games are so-called 2-games, the minimal transfer rule coincides with other TU-game
values, such as the pre-nucleolus and the τ-value of the associated queueing game.
As a direct translation of the balanced cost reduction property, the axiom of balanced
externalities for values of TU-games, requires that the payoff of any player is equal
to the total externality it inflicts on the other players with its presence. We show
that this axiom and efficiency together characterize the Shapley value for 2-games.
However, extending this axiom in a straightfoward way to general TU-games is in-
compatible with efficiency. Keeping as close as possible to the idea behind balanced
externalities, we weaken this axiom by requiring that every player’s payoff is the
same fraction of its total externality inflicted on the other players. This weakening,
which we call weak balanced externalities, turns out to be compatible with efficiency.
More specifically, the unique efficient solution that satisfies this weaker property is
the proportional allocation of nonseparable contribution (PANSC) value, which allocates

1Consider a group of agents who must be served in a facility. The facility can handle only one agent
at a time and agents incur waiting costs. The queueing problem is concerned with finding the order in
which to serve agents and the (positive or negative) monetary compensations they should receive. It is
known that queueing games are so-called 2-additive games, or shortly 2-games, meaning that the worth
is fully generated by coalitions of size two. We refer to Maniquet (2003) and Chun (2006).
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the total worth proportional to the separable costs of the players. This value is the dual
of the PD value discussed in Chapter 2. Based on this duality, we provide axioma-
tizations of the PANSC value using a reduced game consistency axiom. Besides, we
consider a comparison with the EANSC value (Moulin, 1985), as well as the Separa-
ble Costs Remaining Benefits (SCRB) method (Young et al., 1982) and Alternative Cost
Avoided (ACA) method (Straffin and Heaney, 1981; Otten, 1993) in cost allocation
problems.

Chapter 4 explores a new family of values for TU-games that offer a compro-
mise between the PD value and the equal division (ED) value. Recall that the family
of convex combinations of the PD and ED values (Moulin, 1987) considers only the
worths of all singleton coalitions and the grand coalition. Dutta and Ray (1989) argue
that all coalitions should be considered when formulating an (egalitarian) allocation
in a TU-game. This is clearly not the case when one considers the ED or PD value,
or any convex combination of them. As an extension of this family, our family is de-
fined by considering not only the proportional and equal division methods, but also
the worths of all coalitions. Our value, called an α-mollified value, is obtained in two
steps. First, a linear function with respect to the worths of all coalitions is defined
which associates a real number to every TU-game. Second, the weight assigned by
this function is used to weigh proportionality and equality principles in allocating
the worth of the grand coalition. We provide an axiomatic characterization of this
family, and show that this family contains the affine combinations of the ED value
and the equal surplus division (ESD) value as the only linear values. Further, we
identify the PD value and the affine combinations of the ED and ESD values as those
members of this family, that satisfy projection consistency. Besides, we provide a
procedural implementation of each single value in our family.

Chapter 5 concentrates on a family of ‘proportional sharing of the surplus’ type
of values for TU-games, which is a subfamily of values introduced in Chapter 4.
These values are called proportional surplus division values and first make a trade-off
between a player’s stand-alone worth and the average stand-alone worth, and then
allocate the remainder proportional to the stand-alone worths. This family contains
the PD value and the new egalitarian proportional surplus division value as two
special cases. The first one applies an egocentric principle and first assigns to each
player its own stand-alone worth, whereas the second focuses on egalitarianism in
allocating the stand-alone worths by first assigning to every player the average of
all stand-alone worths. Both values apply proportionality in the allocation of the
remaining surplus. We provide characterizations for this family of values, as well
as for each single value in this family. Our characterizations involve two new ax-
ioms which evaluate the consequences of separatorization of a player in TU-games.
Separatorization requires that a player becomes a separator, i.e. a dummifying player
(Casajus and Huettner, 2014a), in a TU-game. Specifically, given a TU-game, sepa-
ratorization of a player means that the worth of any coalition containing this player
becomes equal to the sum of the stand-alone worths of the players in this coalition.
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The first new axiom is proportional loss under separatorization, which states that, if a
player becomes a separator, then any two other players are affected proportionally to
their stand-alone worths. The second new axiom is proportional balanced contributions
under separatorization, which states that any two players are affected proportionally
to their stand-alone worths if the other becomes a separator. Notice that separator-
ization is in line with ‘veto-ification’ introduced in van den Brink and Funaki (2009),
dummification introduced in Béal et al. (2018), and nullification studied in Gómez-
Rúa and Vidal-Puga (2010), Béal et al. (2016b), Ferrières (2017), Kongo (2018), Kongo
(2019), and Kongo (2020).

In Chapter 6, we explore the ED value, the ESD value, and the classes of affine
and convex combinations of them involving the separatorization discussed in Chap-
ter 5. We suggest a new axiom called equal loss under separatorization, which requires
that if a player becomes a separator, then any two other players are equally affected.
This axiom together with efficiency, fairness, and homogeneity characterize the class
of affine combinations of the ED and ESD values. Replacing fairness with linearity
and symmetry yields another axiomatization. We also show that efficiency, equal
loss under separatorization, additivity, desirability, and superadditive monotonic-
ity characterize the class of convex combinations of the ED and ESD values. Equal
loss under separatorization and proportional loss under separatorization (studied in
Chapter 5) respectively suppose equality and proportionality principles on alloca-
tion rules when a player becomes a separator. As a contrast to the axiomatic results
in Subsection 5.4.1, we also provide alternative characterizations of the classes of
affine and convex combinations of the ED and ESD values.
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Chapter 1

Preliminaries

Game theory is the study of mathematical models of strategic interaction among
rational players. A player is said to be rational if the player always makes decisions
in pursuit of her own objectives. Based on whether the players are able to form fully
binding commitments, game theory classifies into two branches: non-cooperative
game theory and cooperative game theory. As it is well known, cooperative games
capture situations in which players can make fully binding commitments to form
coalitions. When it is assumed that all players choose to cooperate, the question is
what should be assigned to each player? The objective of cooperative game theory
is to answer this question.

In this thesis, we will focus on cooperative game theory. A situation in which
a finite set of players can generate certain worths by cooperation can be discribed
by a cooperative game with transferable utility, or simply a TU-game. This chapter
introduces terminology of TU-games that will be used throughout the thesis. In
Section 1.1, we formally introduce TU-games. In Section 1.2, we introduce several
values for TU-games. In Section 1.3, we review some properties and results for these
values. For the ease of the reader, we will repeat the relevant definitions in each
chapter.

1.1 Cooperative games with transferable utility

LetN be the universe of potential players, and let N ⊂ N be a finite set of n players.
The notation S ⊆ T means that S is a subset of T, while the notation S ⊂ T means
that S is a proper subset of T. Let R and R+ denote the sets of all real numbers and
positive real numbers, respectively.

A cooperative game with transferable utility, or simply a (TU-)game, is a pair (N, v),
where N ⊂ N is a set of players and v : 2N → R is a characteristic function assign-
ing a worth v(S) to each S ⊆ N such that v(∅) = 0. A subset S ⊆ N is called a
coalition, and v(S) is the reward that coalition S can guarantee by itself without the
cooperation of the other players. The cardinality of a set S will be denoted by |S| or,
if no ambiguity is possible, appropriate small letter s. Denote G as the class of all
TU-games with a finite player set in N , and GN the class of TU-games with player
set N. For brevity, we refer to a TU-game just as a game.
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Various subclasses of games have been considered in the literature. Some have
arisen naturally in applications to economics; others have emerged out of mathe-
matical considerations. We collect some definitions of games as follows.

A game (N, v) is

• additive or inessential: if v(S) = ∑i∈S v({i}) for all S ⊆ N.

• superadditive: if v(S ∪ T) ≥ v(S) + v(T) for all S, T ⊆ N with S ∩ T = ∅.

• monotone: if v(S) ≤ v(T) for all S, T ⊆ N with S ⊆ T.

• quasi-additive: if v(S) = ∑i∈S v({i}) for all S ⊂ N.

• weakly essential: if ∑i∈N v({i}) ≤ v(N).

• null game: if v(S) = 0 for all S ⊆ N.

The quasi-additive games (Carreras and Owen, 2013) are closely related to joint
venture situations in Moulin (1987). Obviously, a quasi-additive game (N, v) re-
duces to an additive game if v(N) = ∑i∈N v({i}).

Given (N, v), its dual game (N, v∗) is defined by

v∗(S) = v(N)− v(N\S) for all S ⊆ N.

Duality can be applied to solutions as well, and to properties of solutions. For
studies of duality, we refer to Charnes et al. (1978) and Oishi et al. (2016).

The unanimity game for a nonempty coalition S ⊆ N is the game (N, uS) ∈ GN ,
where uS is defined by

uS(T) =

1, if S ⊆ T,

0, otherwise.

It is well-known that the collection of unanimity games {(N, uS) | 0 6= S ⊆
N} forms a basis for GN , i.e., every game (N, v) ∈ GN can be expressed by v =

∑S⊆N,S 6=∅ ∆v(S)uS, where ∆v(S) = ∑T⊆S(−1)|S|−|T|v(T) is the Harsanyi dividend
(Harsanyi, 1959) of coalition S in the game.

Finally, we introduce a restrictive class of TU-games studied in Béal et al. (2018).
This class plays a major role in this thesis. Following Béal et al. (2018), a game (N, v)
is individually positive if v({i}) > 0 for all i ∈ N, and individually negative if v({i}) < 0
for all i ∈ N. Let Gnz denote the class consisting of all individually positive and
individually negative games, and let GN

nz denote the intersection of Gnz and GN .

The notation AN (respectively QAN) denotes the class of all additive games (re-
spectively quasi-additive games) in GN . We express the notation AN

nz (respectively
QAN

nz) for the class of all additive games (respectively quasi-additive games) in GN
nz.
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We remark that Béal et al. (2018) provide many applications of this restrictive
class of TU-games, such as land production economies, telecommunication prob-
lems, and sequencing/queueing problems. Thus, most of our results can also be
applied to these economics problems and other related problems.

1.2 Value concepts for TU-games

Cooperative game theory focuses on two main questions: (i) what coalition will
form? (ii) how to allocate the attainable worth to each player? In this thesis, we
leave out the strategic aspect of coalition formation and consider the second question
under the assumption that the players who are participants in a TU-game can work
together to form every coalition. As mentioned in the Introduction, various value
concepts for TU-games have been proposed concerning different fairness criteria.
In this section, we recall several value concepts that will be further discussed in the
following chapters. These values are divided into two classes, which rely on equality
(or egalitarian) and proportionality principles.

A (single-valued) solution or a value on a class of TU-games C ⊆ G is a function
ψ that assigns a single payoff vector ψ(N, v) ∈ RN to every game (N, v) ∈ C. One
of the most well-known values in the literature is the Shapley value introduced in
Shapley (1953a). The Shapley value assigns to every player its expected marginal
contribution assuming that all possible permutations in which the grand coalition
can be formed occur with equal probability.

Definition 1.1. The Shapley value on GN is defined by

Shi(N, v) = ∑
S⊆N,i∈S

(|S| − 1)!(n− |S|)!
n!

[v(S)− v(S\{i})]

for all (N, v) ∈ GN and i ∈ N.

The Shapley value can also be represented by allocating the Harsanyi dividends
equally over the players in the corresponding unanimity coalition. Namely,

Shi(N, v) = ∑
S⊆N,i∈S

∆(S)
|S| .

In this sense, the Shapley value can be seen as satisfying a notion of equality.

Instead of considering all the coalitions, as the Shapley value does, the literature
also studies several egalitarian values that only take into account some particular
class of coalitions. Various examples of such values are the equal division value, the
equal surplus division value, and the equal allocation of nonseparable costs value.
Formally, their definitions are as follows.
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The equal division (ED) value, axiomatized in van den Brink (2007), allocates the
worth of the grand coalition equally among all players.1

Definition 1.2. The ED value on GN is defined by

EDi(N, v) =
v(N)

n

for all (N, v) ∈ GN and i ∈ N.

The equal surplus division (ESD) value, also known as Centre-of-the-Imputation-Set
(CIS) value in Driessen and Funaki (1991), assigns to each player its own stand-alone
worth and an equal share of the remainder.

Definition 1.3. The ESD value on GN is defined by

ESDi(N, v) = v({i}) + 1
n
[v(N)− ∑

j∈N
v({j})]

for all (N, v) ∈ GN and i ∈ N.

The equal allocation of nonseparable cost (EANSC) value2, introduced by Moulin
(1985), assigns to every player its separable cost and an equal share of the remain-
der. The separable cost is the contribution of a player to the grand coalition (if the
utility of any coalition is a worth/payoff but not a cost, we often use nonseparable
contribution instead of nonseparable cost). Formally, for all (N, v) ∈ GN and i ∈ N,
the separable cost is defined by

SCi(N, v) = v(N)− v(N\{i}). (1.1)

Definition 1.4. The EANSC value on GN is defined by

EANSCi(N, v) = SCi(N, v) +
1
n
[v(N)− ∑

j∈N
SCj(N, v)] (1.2)

for all (N, v) ∈ GN and i ∈ N.

Notice that the EANSC value is the ESD value of the dual game.

In this thesis, the above values are often considered on other classes of games
instead of the class of all TU-games. To avoid confusion, we will recall these values
in each chapter.

We now turn to notions of proportionality. When allocating payoffs, a baseline
should be specified for each player from which to measure her gain, but also an
amount to which she may aspire. Particularly, the proportional Shapley value and
the proportional division value rely on two different proportionality principles.

1Radzik (2013) calls it the equal split value.
2This value is often denoted by EANS value or ENSC value.
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The proportional Shapley value, studied in Béal et al. (2018) and Besner (2019), al-
locates the Harsanyi dividends proportionally to the stand-alone worths among all
players in the corresponding coalition.

Definition 1.5. The proportional Shapley value on GN
nz is defined by

PShi(N, v) = ∑
S⊆N,i∈S

v({i})
∑j∈N v({j})∆(S)

for all (N, v) ∈ GN
nz and i ∈ N.

The proportional division (PD) value allocates the worth of the grand coalition pro-
portionally to the stand-alone worths among all players.

Definition 1.6. The PD value on GN
nz is defined by

PDi(N, v) =
v({i})

∑j∈N v({j})v(N)

for all (N, v) ∈ GN
nz and i ∈ N.

In this thesis, the PD value is often considered on other classes of games instead
of GN

nz. To avoid confusion, we will recall it in each chapter.

The PD value is identical to the proportional rule in Moriarity (1975) and Banker
(1981), and the stand-alone-coalition proportional value in Kamijo and Kongo (2015).
We remark that the PD value cannot be considered as a weighted division value
(Béal et al., 2016b) or the weighted surplus division value (Calleja and Llerena, 2017;
Calleja and Llerena, 2019) since those values are based on exogenous weights, while
the weights in the PD value are determined in the game, specifically they are equal
to the stand-alone worths.

Notice that the PD value often appears in the literature as an example to show
the logical independence of axioms of values for TU-games. However, an axiomatic
characterization of the PD value for general TU-games is still missing.3 This also
motivates us to study the PD value and other related values.

1.3 Properties of values

There is no consensus which is the unique ‘best’ value in cooperative game the-
ory. One should not expect to find a unique dominant value in TU-games, but the
axiomatic approach helps us evaluate the relative merits of values that have been
proposed. An axiom (or a property) of a value is the mathematical expression of the
intuition we have about how a value should behave in certain situations. In this sec-
tion, we review some properties and axiomatizations of values from the literature.

3Recently, Li et al. (2020) studied a comparison between the PD value and the PANSC value in terms
of optimizing satisfaction criteria and associated consistency.
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1.3.1 Basic axioms

Players i, j ∈ N, i 6= j, are symmetric in (N, v) if v(S ∪ {i}) = v(S ∪ {j}) for all
S ⊆ N\{i, j}. For (N, v), (N, w) ∈ C, C ⊆ G, and a, b ∈ R, the game (N, av+ bw) ∈ C
is defined by (av + bw)(S) = av(S) + bw(S) for all S ⊆ N. A permutation of N is a
bijection π : N → N where π(i) = k indicates that player i has the kth position. We
denote Π(N) as the set of all the n! permutations of N.

The following properties are defined on C ⊆ G, which can be any class of games,
depending on the specifications of games at work. Other properties mentioned in
Section 1.3 can be defined for subclasses in an obvious way.

• Efficiency. For all (N, v) ∈ C, C ⊆ G, it holds that ∑i∈N ψi(N, v) = v(N).

• Symmetry. For all (N, v) ∈ C, C ⊆ G, such that i, j ∈ N are symmetric in
(N, v), it holds that ψi(N, v) = ψj(N, v).

• Additivity. For all (N, v), (N, w) ∈ C, C ⊆ G, such that (N, v+w) ∈ C, it holds
that ψ(N, v + w) = ψ(N, v) + ψ(N, w).

• Linearity. For all (N, v), (N, w) ∈ C, C ⊆ G, and a, b ∈ R such that (N, av +

bw) ∈ C, it holds that ψ(N, av + bw) = aψ(N, v) + bψ(N, w).

• Anonymity. For all (N, v) ∈ C, C ⊆ G, and all permutations π : N → N such
that (N, πv) ∈ C, it holds that ψi(N, v) = ψπ(i)(N, πv) for all i ∈ N.

Efficiency states that all players together should totally allocate the worth of the
grand coalition.

Symmetry states that if two players contribute the same amount to each coalition
including neither of them, their payoffs are equal.

Linearity states that when taking a linear combination of two games, the payoff
vector equals the corresponding linear combination of the payoff vectors of the two
separate games. If a = b = 1, linearity reduces to additivity.

Anonymity states that the identity of the players does not affect payoffs of the
players.

It is useful to evaluate a payoff vector for a class of games in relation to the cor-
respending payoff vector for its subgames. Some axioms describe the situations that
only one payoff vector seems natural for games with a trivial structure.

• Inessential game property. For every additive game (N, v) ∈ C, C ⊆ G, it
holds that ψi(N, v) = v({i}) for all i ∈ N.

• Null game property. For the null game (N, v), it holds that ψi(N, v) = 0 for all
i ∈ N.

The inessential game property states that if no additional contribution can be
made by cooperation among players, all players get their stand-alone worth.
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The null game property states that if the worths of all coalitions are zero, all
players get zero.

It is also useful to evaluate a payoff vector for two related games that are almost
the same.

• Continuity. For all sequences of games {(N, wk)} and game (N, v) in C, C ⊆ G,
such that lim

k→∞
(N, wk) = (N, v), it holds that lim

k→∞
ψ(N, wk) = ψ(N, v).

Continuity implies that if two games are almost the same, then their payoff vec-
tors are almost the same.

To characterize the proportional Shapley value, Béal et al. (2018) and Besner
(2019) respectively proposed weak linearity and weak additivity on GN

nz by consid-
ering two games in which the stand-alone worths of all players are in the same pro-
portion to each other.

• Weak linearity (Béal et al., 2018). For all (N, v), (N, w) ∈ GN
nz and all a ∈ R

such that (N, av + w) ∈ GN
nz and there exists c ∈ R with w({i}) = cv({i}) for

all i ∈ N, it holds that ψ(N, av + w) = aψ(N, v) + ψ(N, w).

• Weak additivity (Besner, 2019). For all (N, v), (N, w) ∈ GN
nz such that (N, v +

w) ∈ GN
nz and there exists c ∈ R with w({i}) = cv({i}) for all i ∈ N, it holds

that ψ(N, v + w) = ψ(N, v) + ψ(N, w).

The condition that there exists c ∈ R with w({i}) = cv({i}) for all i ∈ N can be
written as v({i}w({j}) = v({j})w({j}) for all i, j ∈ N.

Weak linearity states that when taking a linear combination of two games, where
the ratio between the stand-alone worths is the same in both games, the payoff allo-
cation equals the corresponding linear combination of the payoff vectors of the two
separate games. If a = 1, weak linearity reduces to weak additivity. These axioms
will be recalled in Chapters 2, 4 and 6, and also used in Chapter 5.

1.3.2 Null, nullifying, dummy, and dummifying

There are situations in which how much should be assigned to a player seems un-
equivocal.

We review notions of some special players in TU-games. Player i ∈ N is a null
player in game (N, v) if v(S ∪ {i}) = v(S) for all S ⊆ N\{i}. Player i ∈ N is a
nullifying player in game (N, v) if v(S) = 0 for all S ⊆ N with i ∈ S. Player i ∈ N is a
dummy player in game (N, v) if v(S ∪ {i}) = v(S) + v({i}) for all S ⊆ N\{i}. Player
i ∈ N is a dummifying player or a separator in game (N, v) if v(S) = ∑j∈S v({j}) for all
S ⊆ N with i ∈ S.
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Notice the difference between a dummy and dummifying player: a dummy
player adds its own stand-alone worth when it joins any coalition, while a dum-
mifying player entering a coalition results in the worth of that coalition becoming
equal to the sum of the stand-alone worths of the players in that coalition.

Again, the following properties, as well as other properties in Section 1.3, are
defined for subclasses in an obvious way like the axioms stated in Subsection 1.3.1.

• Null player property. For all (N, v) ∈ GN such that i ∈ N is a null player in
(N, v), it holds that ψi(N, v) = 0.

• Nullifying player property (van den Brink, 2007). For all (N, v) ∈ GN such
that i ∈ N is a nullifying player in (N, v), it holds that ψi(N, v) = 0.

• Dummy player property. For all (N, v) ∈ GN such that i ∈ N is a dummy
player in (N, v), it holds that ψi(N, v) = v({i}).

• Dummifying player property (Casajus and Huettner, 2014a). For all (N, v) ∈
GN such that i ∈ N is a dummifying player in (N, v), it holds that ψi(N, v) =
v({i}).

The null player axiom states that if a player’s contribution to each coalition is
zero, she gets zero.

The nullifying player axiom states that if a player is such that the worth of each
coalition containing her is zero, she gets zero.

The dummy player axiom states that if a player’s contribution to each coalition
is equal to her own stand-alone worth, she gets her own stand-alone worth.

The dummifying player property states that a dummifying player just earns its
own stand-alone worth.

Various axiomatizations of the Shapley value have been given in the literature.
One of the most famous uses efficiency, symmetry, additivity, and the null player
property, see Shapley (1953a).

Theorem 1.1 (Shapley, 1953a). The Shapley value is the unique value on GN that satisfies
efficiency, symmetry, additivity, and the null player property.

Interestingly, using the nullifying player property instead of the null player prop-
erty, van den Brink (2007) characterizes the ED value. Later, using the dummifying
player property instead of the null player property, Casajus and Huettner (2014a)
characterizes the ESD value.

Theorem 1.2 (van den Brink, 2007). The ED value is the unique value on GN that satisfies
efficiency, symmetry, additivity, and the nullifying player property.

Theorem 1.3 (Casajus and Huettner, 2014a). The ESD value is the unique value on GN

that satisfies efficiency, symmetry, additivity, and the dummifying player property.
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1.3.3 Monotonicity

In the axiomatic formulation of TU-games, monotonicity is an important character-
istic of viable and stable solutions. A monotonicity axiom expresses the requirement
that a player’s payoff should move in a particular direction if a TU-game changes in
certain ways that are ‘advantageous’ for this player. It may be felt that a player is
entitled to at least as much as what she was assigned initially. Due to the richness
of the description of a game, these axioms come in a great variety of forms, such as
these monotonicity axioms listed in this section.

• Strong monotonicity (Young, 1985). For all (N, v), (N, w) ∈ GN and i ∈ N
such that v(S)− v(S\{i}) ≥ w(S)−w(S\{i}) for all S ⊆ N with i ∈ S, it holds
that ψi(N, v) = ψi(N, w).

Strong monotonicity implies comparing the payoffs attributed to a player by a
value in certain games with the same player set. If in one game the player contributes
more, i.e., has a higher marginal contribution, to any coalition than in the other, then
the amount attributed to her by the value in the former should not be smaller than
in the latter game. Young characterized the Shapley value with strong monotonicity.

Theorem 1.4 (Young, 1985). The Shapley value is the unique value on GN that satisfies
efficiency, symmetry, and strong monotonicity.

Under efficiency and symmetry, van den Brink (2007) proved that coalitional
standard equivalence and coalitional monotonicity characterize the ED value.

• Coalitional standard equivalence (van den Brink, 2007). For all (N, v), (N, w) ∈
GN such that i ∈ N is a nullifying player in (N, w), it holds that ψi(N, v + w) =

ψi(N, v).

• Coalitional monotonicity (van den Brink, 2007). For all (N, v), (N, w) ∈ GN

and i ∈ N such that v(S) ≥ w(S) for all S ⊆ N with i ∈ S, it holds that
ψi(N, v) ≥ ψi(N, w).

Coalitional standard equivalence states that the payoff of a player remains un-
changed if we add a game in which this player is a nullifying player.

Coalitional monotonicity states that the payoff of a player should not decrease
whenever the worth of every coalition containing this player weakly increases.

Theorem 1.5 (van den Brink, 2007). The ED value is the unique value on GN that satisfies
efficiency, symmetry, and coalitional standard equivalence.

Theorem 1.6 (van den Brink, 2007). The ED value is the unique value on GN that satisfies
efficiency, symmetry, and coalitional monotonicity.

Following van den Brink (2007), Casajus and Huettner (2014a) proposed coali-
tional surplus equivalence and coalitional surplus monotonicity, and proved that
either of them in addition to efficiency and symmetry characterize the ESD value.



16 Chapter 1. Preliminaries

• Coalitional surplus equivalence (Casajus and Huettner, 2014a). For all (N, v),
(N, w) ∈ GN such that i ∈ N is a dummifying player in (N, w), it holds that
ψi(N, v + w) = ψi(N, v) + w({i}).

• Coalitional surplus monotonicity (Casajus and Huettner, 2014a). For all (N, v),
(N, w) ∈ GN and i ∈ N such that v(S)−∑j∈S v({j}) ≥ w(S)−∑j∈S w({j}) for
all S ⊆ N with i ∈ S, it holds that ψi(N, v)− v({i}) ≥ ψi(N, w)− w({i}).

Coalitional surplus equivalence states that the payoff of a player increases by her
stand-alone worth if we add a game in which this player is a dummifying player.

Coalitional surplus monotonicity states that if two games in which the surplus
of every coalition a player belongs to (measured by the worth of the coalition minus
the sum of the stand-alone worths of its players) weakly increases, then the relative
payoff of this player (being the difference between the payoff and the stand-alone
worth) should not decrease.

Theorem 1.7 (Casajus and Huettner, 2014a). The ESD value is the unique value on GN

that satisfies efficiency, symmetry, and coalitional surplus equivalence.

Theorem 1.8 (Casajus and Huettner, 2014a). The ESD value is the unique value on GN

that satisfies efficiency, symmetry, and coalitional surplus monotonicity.

It is shown in van den Brink and Funaki (2009) that the ED value is the unique
value belonging to the family of efficient, symmetric and linear values that satisfies
nonnegativity.

• Nonnegativity. For all (N, v) ∈ C, C ⊆ G, with v(N) ≥ 0, it holds that
ψi(N, v) ≥ 0 for all i ∈ N.

Theorem 1.9 (van den Brink and Funaki, 2009). The ED value is the unique value on
GN that satisfies efficiency, symmetry, linearity, and nonnegativity.

Next, we present other monotonicity axioms that will be used in this thesis by
modifying the domain into other subclasses.

• Grand coalition monotonicity (Casajus and Huettner, 2014b). For all (N, v),
(N, w) ∈ GN with v(N) ≥ w(N), it holds that ψi(N, v) ≥ ψi(N, w) for all i ∈ N.

• Id+sur monotonicity (Yokote and Funaki, 2017). For all (N, v), (N, w) ∈ GN

and i ∈ N such that v({i}) ≥ w({i}) and v(N) − ∑j∈N v({j}) ≥ w(N) −
∑j∈N w({j}), it holds that ψi(N, v) ≥ ψi(N, w).

• Superadditive monotonicity (Ferrières, 2017). For every superadditive and
monotone game (N, v) ∈ GN , it holds that ψi(N, v) ≥ 0 for all i ∈ N.

• Desirability (Maschler and Peleg, 1966). For all (N, v) ∈ GN and i, j ∈ N
such that v(S ∪ {i}) ≥ v(S ∪ {j}) for all S ⊆ N\{i, j}, it holds that ψi(N, v) ≥
ψj(N, v).
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Grand coalition monotonicity states that if two games in which the worth of the
grand coalition weakly increases, then the payoffs of all players should not decrease.

Id+sur monotonicity states that if two games in which the stand-alone worth of
a player and the surplus of the grand coalition weakly increases, then the payoff of
this player should not decrease.

Superadditive monotonicity states that a player’s payoff is nonnegative in a su-
peradditive and monotone TU-game.

Desirability states that if i’s contributions are not less than j’s contributions, then
i should receive at least j’s payoff.

1.3.4 Relational contributions

The relational contributions of two players also play a crucial role in the intuition
of fairness. The relational contribution refers to some specific changes or some in-
variance principle on the payoffs according to particular modifications of the game.
One of the most well-known of such properties is balanced contributions introduced
by Myerson (1980), who first considers the change in payoff of a player when other
player leaves the game. We begin this subsection by recalling the balanced contribu-
tions axiom.

Given (N, v) ∈ GN and i ∈ N, the game (N\{i}, vN\{i}) on player set N\{i} is
defined by vN\{i}(S) = v(S) for all S ⊆ N\{i}. For simplicity, (N\{i}, vN\{i}) is
written as (N\{i}, v).

Suppose that players agree to use a value ψ whenever the grand coalition forms.
Then ψi(N, v)−ψi(N\{j}, v) is the amount player i gains or loses when N is already
formed and player j resigns. The balanced contributions axiom requires that the
amounts that each player would gain or lose by the other’s withdrawal from the
coalition should be equal.

• Balanced contributions (Myerson, 1980). For all (N, v) ∈ GN and i, j ∈ N, it
holds that ψi(N, v)− ψi(N\{j}, v) = ψj(N, v)− ψj(N\{i}, v).

Theorem 1.10 (Myerson, 1980). The Shapley value is the unique value on GN that satisfies
efficiency and balanced contributions.

Instead of considering a variable player set, as balanced contributions does, sev-
eral related properties are formulated on a fixed player set. In van den Brink and Fu-
naki (2009), it is supposed that player h ∈ N becomes a veto player in game (N, v),
i.e. instead of characteristic function v, and consider the characteristic function vh

vo

given by

vh
vo(S) =

v(S) if h ∈ S, S ⊆ N,

0 otherwise.
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Based on this operation, which is called veto-ification by Ferrières (2017), van den
Brink and Funaki (2009) suggest the veto equal loss property by requiring that veto-
ification yields the same change in payoff for the other players when a game (N, v)
is zero-normalized, i.e. v(i) = 0 for all i ∈ N.

• Veto equal loss property. For every zero-normalized game (N, v) with |N| ≥
3, all h ∈ N and all i, j ∈ N\{h}, it holds that

ψi(N, v)− ψi(N, vh
vo) = ψj(N, v)− ψj(N, vh

vo).

Considering the effect on a player becoming a null player in a game, Ferrières
(2017) and Kongo (2018) independently suggested the nullified equal loss property
in axiomatizing the ED value, the ESD value, and the classes of their affine and
convex combinations. Given (N, v) ∈ GN and h ∈ N, (N, vh

0) denotes player h
becoming a null player in (N, v), i.e. the characteristic function vh

0 is given by

vh
0(S) =

v(S\{h}) if h ∈ S, S ⊆ N,

v(S) otherwise.

• Nullified equal loss property. For all (N, v) ∈ GN with |N| ≥ 3, all h ∈ N and
all i, j ∈ N\{h}, it holds that

ψi(N, v)− ψi(N, vh
0) = ψj(N, v)− ψj(N, vh

0).

Theorem 1.11 (Ferrières, 2017). Let |N| ≥ 3. A value ψ on GN satisfies efficiency, the
nullified equal loss property, linearity, and symmetry if and only if there is β ∈ R such that
ψ = βESD + (1− β)ED.

Ferrières (2017) and Kongo (2018) also provide axiomatic results by employing
the monotonicity axioms, see Subsection 1.3.3.

Theorem 1.12 (Ferrières, 2017). Let |N| ≥ 3. A value ψ on GN satisfies efficiency, the
nullified equal loss property, additivity, desirability, and superadditive monotonicity if and
only if there is β ∈ [0, 1] such that ψ = βESD + (1− β)ED.

Theorem 1.13 (Kongo, 2018). Let |N| ≥ 3. Let ψ be a value on GN that satisfies efficiency,
the nullified equal loss property, and the null game property. Then,

(i) ψ satisfies grand coalition monotonicity if and only if ψ = ED.

(ii) ψ satisfies Id+sur monotonicity if and only if ψ = ESD.

Similarly, Béal et al. (2018) offer a characterization of the proportional Shapley
value on GN

nz by considering the effect on a player of becoming a dummy player in a
game.
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• Proportional balanced contributions under dummification (Béal et al., 2018).
For all (N, v) ∈ GN

nz and i, j ∈ N, it holds that

ψi(N, v)− ψi(N, vj
d)

v({i}) =
ψj(N, v)− ψj(N, vi

d)

v({j}) ,

where (N, vi
d) ∈ GN

nz is the game in which i is dummified: vi
d(S) = v(S\{i}) +

v({i}) for all S ⊆ N with i ∈ S, and vi
d(S) = v(S) for all S 63 i.

Theorem 1.14 (Béal et al., 2018). The proportional Shapley value is the unique value on
GN

nz that satisfies efficiency, proportional balanced contributions under dummification, and
the inessential game property.

1.3.5 Consistency

We now turn to notions of consistency. Consistency principles, first investigated
for abstract models of cooperative game theory, have now been examined in the
context of a great variety of resource allocation problems. Consistency of a value
in TU-games is described as follows. Given a payoff vector chosen by the value for
some initial game, and given a subgroup of players, a so-called reduced game among
them is constructed from the initial game by giving the rest of the players payoffs
according to the payoff vector. The value is consistent if it selects the same payoff
allocation over the remaining players for the reduced game as initially.

In the literature, various values in TU-games are characterized by means of a
consistency property in terms of the reduced games. Without going into detials,
we mention that such values include, e.g., the Shapley value, the ED value, the
ESD value, the EANSC value, the kernel (Davis and Maschler, 1965), the preker-
nel (Maschler et al., 1971), the nucleolus (Schmeidler, 1969), and the Core (Gillies,
1953). Most of the contributions of these values can be found in some surveys, see
Driessen (1991), Thomson (1990), and Thomson (2011a).

In this thesis, we will characterize the PD value involving projection consistency
used in Funaki and Yamato (2001), van den Brink and Funaki (2009), van den Brink
et al. (2016), Calleja and Llerena (2017), and Calleja and Llerena (2019). In van den
Brink and Funaki (2009) and van den Brink et al. (2016), projection consistency is
employed in evaluating egalitarian values, such as the ED value, the ESD value, the
EANSC value, and the class of combinations of them.

If a player j ∈ N leaves game (N, v) with a certain payoff, then the projection re-
duced game is a game on the remaining player set that assigns to every proper subset
of N \ {j} its worth in the original game, and to coalition N \ {j} assigns the worth
v(N) in (N, v) minus the payoff assigned to player j.

Definition 1.7. Given a game (N, v) ∈ G with |N| ≥ 2, a player j ∈ N and a pay-
off vector x ∈ RN , the projection reduced game with respect to j and x is the game
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(N\{j}, vx) given by

vx(S) =

v(N)− xj if S = N\{j},

v(S) if S ⊂ N\{j}.

Projection consistency requires that the payoffs assigned to the remaining players
in N \ {j}, after player j leaving the game with its payoff according to a value ψ, is
the same in the reduced game as in the original game.

Definition 1.8. A value ψ satisfies projection consistency if for every game (N, v) ∈ G
with |N| ≥ 3, j ∈ N, and x = ψ(N, v), it holds that ψi(N\{j}, vx) = ψi(N, v) for all
i ∈ N\{j}.

This consistency principle will be recalled in Subsection 2.3.3, but the domain G
is replaced by Gnz (and thus the definition should be slightly modified).

A sequence of the reduced games from an n-player game yields a two-player
game, so the consistency principles are usually considered together with the proper-
ties only for two-player games. For instance, the Shapley value is characterized by
a consistency principle and standardness in Hart and Mas-Colell (1989). Standardness
assigns each player its stand-alone worth and allocates the surplus equally over all
players for two-player games.

Definition 1.9 (Hart and Mas-Colell, 1989). A value ψ satisfies standardness if for
every game (N, v) ∈ GN with |N| = 2, it holds that

ψi(N, v) = v({i}) + 1
2
[v(N)− v({i})− v({j})], ∀i, j ∈ N.

Similarly, α-standardness for two-player games assigns each player the fraction α

of its stand-alone worth and allocates the surplus equally over all players for two-
player games. This axiom is first introduced in Joosten (1996) for axiomatizing the
α-egalitarian Shapley values. Later on, van den Brink and co-authors did much more
with it. For example, van den Brink et al. (2013) combine it with Sobolev consistency
to obtain the class of egalitarian Shapley values; van den Brink and Funaki (2009)
and van den Brink et al. (2016) combine it with projection consistency to obtain the
class of egalitarian values.

Definition 1.10 (Joosten, 1996). A value ψ satisfies α-standardness for two-player games
if for every game (N, v) ∈ GN with |N| = 2, it holds that

ψi(N, v) = αv({i}) + 1
2
[v(N)− α(v({i}) + v({j}))], ∀i, j ∈ N.

Both standardness and α-standardness for two-player games indicate an equality
principle, whereas the following proportional standardness indicates a proportion-
ality principle.
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Proportional standardness, also known as “proportional for two person games”
in Ortmann (2000), requires that in two-player games we allocate the worth of the
grand coalition over the two players proportional to their stand-alone worths. This
is equivalent to saying that every player in a two-player game earns its own stand-
alone worth, and the remainder of the worth is shared proportionally based on their
stand-alone worths.

Definition 1.11 (Ortmann, 2000). A value ψ satisfies proportional standardness if for
every game (N, v) ∈ Gnz with |N| = 2, it holds that

ψi(N, v) = v({i}) + v({i})
v({i}) + v({j}) [v(N)− v({i})− v({j})], ∀i, j ∈ N.

It is known that the Shapley value (Shapley, 1953a) and the ESD value (Driessen
and Funaki, 1991) satisfy standardness, α-egalitarian Shapley values (Joosten, 1996)
and the ED value (axiomatized in van den Brink (2007)) satisfy egalitarian stan-
dardness, and various proportional values, such as the proportional value (Ort-
mann, 2000), the proportional Shapley value (Béal et al., 2018; Besner, 2019), the
proper Shapley values (Vorob’ev and Liapunov, 1998; van den Brink et al., 2015), and
the proportional Harsanyi solution (Besner, 2020) satisfy proportional standardness.
Without going into details, we only recalled the following result.

Theorem 1.15 (van den Brink et al., 2016). Let α ∈ [0, 1]. A value ψ on G satisfies
projection consistency and α-standardness for two-player games if and only if ψ = αESD +

(1− α)ED.

For ease of the reader, we will repeat the relevant definitions in the following
chapters.
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Chapter 2

Axiomatizations of the
Proportional Division Value

2.1 Introduction

Proportionality is an often applied equity principle in allocation problems. The idea
of proportionality can be traced at least as far back as Aristotle’s celebrated maxim,
“Equals should be treated equally, unequals unequally, in proportion to relevant similarities
and differences” from Nicomachean Ethics. In this chapter, which is based on Zou
et al. (2021), we consider the proportionality principle in the context of TU-games.

With a natural proportionality consideration, the proportional rule (Moriarity, 1975;
Banker, 1981) allocates the worth of the grand coalition in proportion to the stand-
alone worths of its members. In the thesis, we call this the proportional division value,
shortly denoted by the PD value, in order to distinguish it from the proportional rule
in bankruptcy problems, claims problems, bargaining problems, insurance, law and
so on.1

Moulin (1987) characterizes the PD value for joint venture games, being a class of
TU-games where intermediate coalitions are inessential, in the sense that the worth of
every proper subset of the full player set equals the sum of the worths of its stand-
alone coalitions. These are the quasi-additive games in Carreras and Owen (2013),
where the PD value is discussed by comparing it with the Shapley value (Shap-
ley, 1953a). Banker (1981) considers the situation that the worth of a coalition is a
non-negative strictly increasing function with respect to the sum of the worths of its
members. However, for more general TU-games, since the proportionality principle
is not obvious, as far as we know, an axiomatic characterization of the PD value is
still missing.

In this chapter, we axiomatize the PD value on the domain of TU-games in which
the worths of all singleton coalitions are nonzero and have the same sign. This re-
strictive class of TU-games is considered in Béal et al. (2018) who also provide many

1For other proportional solutions, we refer to the proportional value (Ortmann, 2000; Khmelnit-
skaya and Driessen, 2003; Kamijo and Kongo, 2015), the proper Shapley values (Vorob’ev and Lia-
punov, 1998; van den Brink et al., 2015), the proportional Shapley value (Béal et al., 2018; Besner, 2019),
and the proportional Harsanyi solution (Besner, 2020).
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applications, such as airport games (Littlechild and Owen, 1973), highway cost shar-
ing problems (Kuipers et al., 2013), data sharing games (Dehez and Tellone, 2013).
We focus on some intuitive fairness criteria that are widely used in the theory for
TU-games, including equal treatment of equals (also known as symmetry), monotonic-
ity, and consistency.

First, we introduce a proportionality principle called proportional-balanced treat-
ment in TU-games, which is a strengthening of Shapley’s symmetry axiom. It states
that the payoffs to two players whose contribution to every nonempty coalition not
containing them is the same (we call this weak symmetric players), are proportional
to their stand-alone worths. It well captures the principles of ‘equal treatment of
equals’ and ‘unequal treatment of unequals’. Besner (2019) gives a similar axiom
for the proportional Shapley value. Interestingly, proportional-balanced treatment
together with efficiency and weak linearity as introduced in Béal et al. (2018), give
a family of values that have a formula similar as the family of efficient linear and
symmetric values (ELS values for short) introduced in Ruiz et al. (1998), but where
the role of equal division is replaced by proportional division. While the Shapley
value is the only ELS value that satisfies the dummy player property, we reveal that
there is no value belonging to our family that satisfies the dummy player property.
Instead, we adopt the dummifying player property introduced in Casajus and Huet-
tner (2014a), and obtain a characterization of the PD value.

Second, we provide characterizations of the PD value by applying weaker ver-
sions of well-known monotonicity axioms. A monotonicity axiom states that the
payoff of a player should not decrease if a TU-game changes in certain ways that are
‘advantageous’ for this player. We introduce three such monotonicity axioms that
are a relaxation of three existing axioms, by adding restrictions on the stand-alone
worths of the players.2 The three existing axioms are coalitional monotonicity due
to van den Brink (2007), and coalitional surplus equivalence and coalitional surplus
monotonicity, both axioms due to Casajus and Huettner (2014a). Not surprisingly,
any of our monotonicity axioms together with efficiency and symmetry cannot char-
acterize a unique value. However, replacing symmetry by proportional-balanced
treatment and any of our monotonicity axioms, characterizes the PD value.

For a variable player set, we provide an axiomatization of the PD value using
proportional standardness and the well-known projection consistency due to Fu-
naki and Yamato (2001). Proportional standardness requires to apply proportional
division for two-player games, and is used in Ortmann (2000), Khmelnitskaya and
Driessen (2003), van den Brink and Funaki (2009), and Huettner (2015). Like other
standardness axioms, proportional standardness is rather strong since it sets the pay-
off alloction for two-player games. Therefore, we conclude with characterizing pro-
portional standardness on the class of two-player games.

2This modification is similar in spirit to parameterized monotonicity introduced in Yokote and Fu-
naki (2017).
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This chapter is organized as follows. Section 2.2 recalls basic definitions and no-
tation. Section 2.3 contains four subsections and deals with characterizations of the
PD value. In Subsection 2.3.1, we introduce proportional-balanced treatment and
provide some results including an axiomatic charaterization of the PD value. In
Subsection 2.3.2, we offer three axiomatic charaterizations using some monotonic-
ity axioms. In Subsection 2.3.3, we give an axiomatic charaterization on variable
player sets by employing projection consistency and proportional standardness. In
Subsection 2.3.4, we characterize proportional standardness for two-player games.
The logical independence among the axioms in the provided characterizations is an-
alyzed in Section 2.4. The proofs are provided in Section 2.5. Section 2.6 concludes.

2.2 Definitions and notation

We recall some definitions and notation. As mentioned in the introduction, we re-
strict our discussion to the class GN

nz that consists of all individually positive and in-
dividually negative games on given player set N, i.e., GN

nz = {(N, v) ∈ GN | v({i}) >
0 for all i ∈ N, or v({i}) < 0 for all i ∈ N}.

The proportional division (PD) value on GN
nz is given by

PDi(N, v) =
v({i})

∑j∈N v({j})v(N) (2.1)

for all (N, v) ∈ GN
nz and i ∈ N.

The following properties of values, stated in Chapter 1 for arbitrary subclasses
of games, will be considered in this chapter.

• Efficiency. For all (N, v) ∈ GN
nz, it holds that ∑i∈N ψi(N, v) = v(N).

• Symmetry. For all (N, v) ∈ GN
nz such that i, j ∈ N are symmetric in (N, v), it

holds that ψi(N, v) = ψj(N, v).

• Dummy player property. For all (N, v) ∈ GN
nz such that i ∈ N is a dummy

player in (N, v), it holds that ψi(N, v) = v({i}).

• Dummifying player property. For all (N, v) ∈ GN
nz such that i ∈ N is a dum-

mifying player in (N, v), it holds that ψi(N, v) = v({i}).

• Weak linearity. For all a ∈ R, and all (N, v), (N, w) ∈ GN
nz such that there

exists c ∈ R+ with w({i}) = cv({i}) for all i ∈ N, if (N, av + w) ∈ GN
nz, then

ψ(N, av + w) = aψ(N, v) + ψ(N, w).

The first four axioms are classical, except that they are defined on subclass GN
nz.

Weak linearity, proposed by Béal et al. (2018), states that when taking a linear com-
bination of two games, where the ratio between the stand-alone worths is the same
in both games, the payoff allocation equals the corresponding linear combination of
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the payoff vectors of the two separate games. This axiom is a weak version of the
axiom of linearity as proposed by Shapley (1953a). If a = 1, then weak linearity
reduces to weak additivity, which is introduced and studied in Besner (2019).

2.3 Axiomatic characterizations

This section aims to provide characterizations of the PD value for TU-games.

2.3.1 Proportionality principle

In this subsection, we introduce a new axiom, called proportional-balanced treat-
ment, and characterize the PD value.

Definition 2.1. Players i, j ∈ N, i 6= j, are weak symmetric in (N, v) if v(S ∪ {i}) =

v(S ∪ {j}) for all S ⊆ N\{i, j}, S 6= ∅.

Two players being weak symmetric still allows them to have a different stand-
alone worth, but their contribution to any nonempty coalition including neither of
them should be equal. Notice that in two-player games, both players are always
weak symmetric. We now introduce a proportionality property, comparable to sym-
metry, which says that the payoffs to two weak symmetric players are in the same
proportion as their stand-alone worths. This axiom can be considered as a strength-
ening of Shapley’s symmetry axiom since it implies that any two symmetric players
in any game should earn the same payoff.

• Proportional-balanced treatment. For all (N, v) ∈ GN
nz such that i, j ∈ N are

weak symmetric players in (N, v), it holds that ψi(N,v)
v({i}) =

ψj(N,v)
v({j}) .

Next, we exactly characterize the class of values on GN
nz that satisfies efficiency,

weak linearity, and proportional-balanced treatment.

Theorem 2.1. A value ψ on GN
nz satisfies efficiency, weak linearity, and proportional-balanced

treatment if and only if for all (N, v) ∈ GN
nz and all i ∈ N,

ψi(N, v)

= v({i})
∑j∈N v({j})v(N) + v({i})

[
∑

S:i∈S 6=N
|S|≥2

λS
∑j∈S v({j})v(S)− ∑

S:i 6∈S
|S|≥2

λS
∑j∈N\S v({j})v(S)

]
, (2.2)

where for each S ⊂ N with |S| ≥ 2, λS is a real number such that

λS

∑j∈S v({j})∑j∈N\S v({j}) =
λT

∑j∈T v({j})∑j∈N\T v({j}) , if |S| = |T|. (2.3)

The proof of Theorem 2.1 and of all other results in this chapter can be found in
Section 2.5. The proof of Theorem 2.1 uses the following proposition.
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Proposition 2.1. Let N ∈ N with |N| = 2. The PD value is the unique value on GN
nz

satisfying efficiency and proportional-balanced treatment.

The values characterized in Theorem 2.1 can be seen as modifications of the PD
value, where to every game they first apply the PD value and then make a ‘correc-
tion’ that is based on the stand-alone worth of a player and the difference between
weighted sums of the worths of all other coalitions with and without this player. The
weights depend on all stand-alone worths. In this sense, (2.2) bears some similarity
with the family of efficient, linear and symmetric (ELS) values (Lemma 9, Ruiz et al.,
1998) which can be written as:

ψi(N, v) =
v(N)

|N| + ∑
S:i∈S 6=N

ρs

|S|v(S)− ∑
S:i 6∈S

ρs

|N| − |S|v(S), (2.4)

where ρs, s ∈ {1, 2, . . . , n− 1}, is a real number. The ELS values can be seen as first
applying equal division and then make a correction based on a weighted sum of
differences between worths of coalitions with and without a player. Specifically, if
v({i}) = v({j}) for all i, j ∈ N, (2.2) coincides with the above equation.

Remark 2.1. Note that (2.3) indicates that all coefficients of coalitions of the same
size are uniquely determined as soon as any one of them is given. For computational
convenience, given {λS ∈ R | S ⊂ N, |S| ≥ 2}, denoting λs = λS

∑j∈S v({j})∑j∈N\S v({j}) ,
(2.2) can be rewritten as

ψi(N, v)

= v({i})v(N)
∑j∈N v({j}) + v({i})

[
∑

S:i∈S 6=N
∑

j∈N\S
v({j})λsv(S)− ∑

S:i 6∈S
∑
j∈S

v({j})λsv(S)
]

, (2.5)

where λ1 = 0, and λs, s ∈ {2, . . . , n − 1}, is a function with respect to λS and all
stand-alone worths. Since λs might be different for different games which stand-
alone worths are different, (2.5) cannot be directly used to verify weak linearity.

Remark 2.2. A family of values derived from the family of ELS values given by (2.4)
with ρ1 = 0, satisfies proportional-balanced treatment as follows. For any ELS value
ψ′ given by (2.4) with ρ1 = 0, the value ψ defined by

ψi(N, v) =
v({i})

∑k∈N v({k})ψ′i(N, v) +
v({i})

∑k∈N v({k})

[
v(N)− ∑

h∈N

v({h})ψ′h(N, v)
∑k∈N v({k})

]
(2.6)

satisfies proportional-balanced treatment, and also efficiency and weak linearity.
This value can be viewed as a multiplicative normalization of an ELS value.

A next question is whether the class of values characterized in Theorem 2.1 con-
tains a value that satisfies the dummy player property. It turns out that, for games
with at least three players, the dummy player property is incompatible with the
three axioms in Theorem 2.1.
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Theorem 2.2. Let |N| ≥ 3. There is no value on GN
nz satisfying efficiency, weak linearity,

proportional-balanced treatment, and the dummy player property.

Notice that for |N| = 2, the PD value satisfies these axioms.

Since the PD value satisfies efficiency, weak linearity, and proportional-balanced
treatment on GN

nz, it belongs to the class of values characterized in Theorem 2.1. In
fact, it is the value corresponding to λS = 0 for all S ⊆ N. As it turns out, replacing
the dummy player property in Theorem 2.2 by the dummifying player property,
characterizes the PD value (also holds for two-player games).

Theorem 2.3. The PD value is the unique value on GN
nz that satisfies efficiency, weak lin-

earity, proportional-balanced treatment, and the dummifying player property.

Logical independence of the axioms in this theorem, as well as other theorems in
this chapter, is shown in Section 2.4.

Remark 2.3. If the domain is relational to the class containing all individually equal
games (i.e., (N, v) ∈ GN

nz such that v({i}) = v({j}) for all i, j ∈ N), then weak lin-
earity and proportional-balanced treatment reduce to linearity and symmetry (since
for any game in this class, all stand-alone worths are the same), respectively. Denot-
ing this class of games by GN

e , in contrast to Theorem 2.2 and Theorem 2.3, one can
obtain the following results: (i) The Shapley value is the unique value on GN

e that
satisfies efficiency, additivity, symmetry, and the dummy player property; (ii) The
equal division (ED) value is the unique value on GN

e that satisfies efficiency, additiv-
ity, symmetry, and the dummifying player property.

Remark 2.4. Besner (2019) characterizes the proportional Shapley value by employ-
ing a proportionality axiom, which says ψi(N,v)

v({i}) =
ψj(N,v)
v({j}) for all (N, v) ∈ GN

nz and
i, j ∈ N such that v(S∪ {k}) = v(S) + v({k}), k ∈ {i, j}, for all S ⊆ N\{i, j}. Clearly,
this axiom focuses on a pair of weakly dependent players, whereas proportional-
balanced treatment considers weak symmetric players.

We conclude this section by comparing our results with the main results in Casajus
and Huettner (2014a), which show that on the domain of TU-games GN , the equal
surplus division (ESD) value treats dummifying players in the same way as the
Shapley value handles dummy players. Restricting ourselves to the subclass GN

nz,
notice that the PD value is a variation of both the ED value and the ESD value since
PDi(N, v) = v({i})

∑j∈N v({j})v(N) = v({i}) + v({i})
∑j∈N v({j}) [v(N) − ∑j∈N v({j})]. Interest-

ingly, Theorem 2.3 gives a characterization of the PD value using the dummifying
player property, whereas, for |N| ≥ 3, using the dummy player property instead of
the dummifying player property leads to an impossibility, as shown in Theorem 2.2.

2.3.2 Monotonicity

In this subsection, we present axiomatic characterizations of the PD value by im-
posing three appropriate monotonicity axioms being weaker versions of classical
monotonicity axioms in the literature.
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• Weak coalitional surplus equivalence3. For all (N, v), (N, w) ∈ GN
nz with

v({j}) = w({j}) for all j ∈ N, and i ∈ N being a dummifying player in (N, w),
it holds that ψi(N, v + w) = ψi(N, v) + w({i}).

• Weak coalitional surplus monotonicity. For all (N, v), (N, w) ∈ GN
nz with

w({j}) = cv({j}) for all j ∈ N and c ∈ R+, and i ∈ N such that v(S) −
∑j∈S v({j}) ≥ w(S) − ∑j∈S w({j}) for all S ⊆ N with i ∈ S, it holds that
ψi(N, v)− v({i}) ≥ ψi(N, w)− w({i}).

• Weak coalitional monotonicity. For all (N, v), (N, w) ∈ GN
nz with v({j}) =

w({j}) for all j ∈ N, and i ∈ N such that v(S) ≥ w(S) for all S ⊆ N with i ∈ S,
it holds that ψi(N, v) ≥ ψi(N, w).

Weak coalitional surplus equivalence states that the payoff of a player increases
by her stand-alone worth if we add a game in which this player is a dummifying
player and each stand-alone worth is the same as that of the original game.

Weak coalitional surplus monotonicity states that if two games in which the
stand-alone worths of all players are in the same proportion to each other and the
surplus of every coalition a player belongs to (measured by the worth of the coali-
tion minus the sum of the stand-alone worths of its players) weakly increases, then
the relative payoff of this player (being the difference between the payoff and the
stand-alone worth) should not decrease.

Weak coalitional monotonicity states that the payoff of a player should not de-
crease whenever the worth of every coalition containing this player weakly increases,
while the worth of every singleton coalition remains unchanged.

Weak coalitional surplus equivalence (respectively, weak coalitional surplus mono-
tonicity) is a weak version of coalitional surplus equivalence (respectively, coali-
tional surplus monotonicity) as defined in Casajus and Huettner (2014a). Weak coali-
tional monotonicity is stronger than coalitional monotonicity4 as defined in Shubik
(1962), while it is weaker than coalitional monotonicity as defined in van den Brink
(2007).5 Not surprisingly, any of our monotonicity axioms together with efficiency
and symmetry cannot characterize a unique value. Outstandingly, replacing sym-
metry by proportional-balanced treatment and keeping efficiency, we derive that
any of our monotonicity axioms characterizes the PD value.

Notice that weak coalitional monotonicity is a specific case of weak coalitional
surplus monotonicity taking c = 1. In addition, weak coalitional surplus mono-
tonicity implies weak coalitional surplus equivalence.

3Weak coalitional surplus equivalence is a monotonicity principle since it is implied by weak coali-
tional surplus monotonicity with c = 2. See Lemma 2.1.

4A value ψ satisfies Shubik’s version of coalitional monotonicity if ψi(N, v) ≥ ψi(N, w) for all
(N, v), (N, w) ∈ GN and i ∈ N such that v(S) ≥ w(S) for all S ⊆ N with i ∈ S, and v(S) = w(S)
for all S ⊆ N\{i}.

5Under efficiency and symmetry, coalitional monotonicity characterizes the equal division value in
van den Brink (2007), and either coalitional surplus equivalence or coalitional surplus monotonicity
characterizes the equal surplus division value in Casajus and Huettner (2014a).
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Lemma 2.1. On GN
nz, weak coalitional surplus monotonicity implies weak coalitional sur-

plus equivalence.

Considering weak coalitional surplus equivalence and weak coalitional surplus
monotonicity, the PD value is characterized by either one of these axioms in addition
to efficiency and proportional-balanced treatment.

Theorem 2.4. (i) The PD value is the unique value on GN
nz that satisfies efficiency, proportional-

balanced treatment, and weak coalitional surplus equivalence.

(ii) The PD value is the unique value on GN
nz that satisfies efficiency, proportional-

balanced treatment, and weak coalitional surplus monotonicity.

The next lemma shows a logical implication between the axioms in Theorem 2.3
and Theorem 2.4(i), which implies that weak linearity in Theorem 2.3 can be weak-
ened as weak additivity.

Lemma 2.2. Weak additivity and the dummifying player property together imply weak
coalitional surplus equivalence.

It is easy to verify that the PD value satisfies weak coalitional monotonicity.
Interestingly, the PD value is characterized by replacing weak coalitional surplus
monotonicity with weak coalitional monotonicity in Theorem 2.4(ii). In this case,
proportional-balanced treatment even can be weakened by requiring the propor-
tionality only for games in which all players are weak symmetric.

• Weak proportional-balanced treatment. For all (N, v) ∈ GN
nz such that all play-

ers are weak symmetric in (N, v), it holds that ψi(N,v)
v({i}) =

ψj(N,v)
v({j}) for all i, j ∈ N.

Theorem 2.5. The PD value is the unique value on GN
nz that satisfies efficiency, weak

proportional-balanced treatment, and weak coalitional monotonicity.

Notice that by using the monotonicity axioms in Theorems 2.4 and 2.5, we can
get rid of weak linearity.

Considering the relationship between our monotonicity axioms and the stronger
versions introduced in Casajus and Huettner (2014a) and van den Brink (2007) (to
characterize the ESD value or the ED value, see Theorems 1.6, 1.7, and 1.8), from
Theorems 2.4 and 2.5, we obtain the following corollary.

Corollary 2.1. Let |N| ≥ 2. There is no value on GN
nz satisfying

(i) efficiency, proportional-balanced treatment, and coalitional surplus equivalence.

(ii) efficiency, proportional-balanced treatment, and coalitional surplus monotonic-
ity.

(iii) efficiency, weak proportional-balanced treatment, and coalitional monotonic-
ity.
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As shown before, weak coalitional surplus monotonicity is stronger than both
weak coalitional surplus equivalence and weak coalitional monotonicity. We con-
clude this subsection by mentioning two values to show logical independence of
weak coalitional surplus equivalence and weak coalitional monotonicity. The value
ψi(N, v) = v({i})− 1

n [v(N)−∑j∈N v({j})], i ∈ N, satisfies weak coalitional surplus

equivalence, but not weak coalitional monotonicity; the ED value ψi(N, v) = v(N)
n ,

i ∈ N, satisfies weak coalitional monotonicity, but not weak coalitional surplus
equivalence.

2.3.3 Consistency

In this subsection, we consider a variable player set, and characterize the PD value
by proportional standardness used in Ortmann (2000), Khmelnitskaya and Driessen
(2003), and Huettner (2015), and projection consistency used in Funaki and Yamato
(2001), van den Brink and Funaki (2009), van den Brink et al. (2016), Calleja and
Llerena (2017), and Calleja and Llerena (2019).

The consistency principle is based on the idea that the payoffs of the remaining
players should not change when a specific player leaves the game with the payoff
that is assigned to this player by the solution. In the literature, there appear various
reduced games which assess the effect on the worths of coalitions of remaining play-
ers in a different way. Here, we consider the projection reduced game, which is also
mentioned in Subsection 1.3.5.

If a player j ∈ N leaves game (N, v) with a certain payoff, then the projection
reduced game is a game on the remaining player set that assigns to every proper
subset of N\{j} its worth in the original game, and to coalition N\{j} assigns its
worth in (N, v) minus the payoff assigned to player j.

Definition 2.2. Given a game (N, v) ∈ Gnz with |N| ≥ 2, a player j ∈ N and a
payoff vector x ∈ RN , the projection reduced game with respect to j and x is the game
(N\{j}, vx) given by

vx(S) =

v(N)− xj if S = N\{j},

v(S) if S ⊂ N\{j}.

Projection consistency requires that the payoffs assigned to the remaining players
in N\{j}, after player j leaving the game with its payoff according to a value ψ, is
the same in the reduced game as in the original game.

Definition 2.3. A value ψ satisfies projection consistency if for every game (N, v) ∈
Gnz with |N| ≥ 3, j ∈ N, and x = ψ(N, v), it holds that (N\{j}, vx) ∈ Gnz, and
ψi(N\{j}, vx) = ψi(N, v) for all i ∈ N\{j}.
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Definition 2.4. A value ψ satisfies proportional standardness if for every game (N, v) ∈
Gnz with |N| = 2, it holds that

ψi(N, v) = v({i}) + v({i})
v({i}) + v({j}) [v(N)− v({i})− v({j})], ∀i, j ∈ N.

This is equivalent to ψi(N, v) = v({i})
v({i})+v({j})v(N). Proportional standardness is

called “proportional for two person games” in Ortmann (2000).

Proposition 2.2. The PD value on Gnz satisfies projection consistency.

Projection consistency together with proportional standardness (for two-player
games) characterizes the PD value on the class of games with at least two players.
We denote the class of games in Gnz with at least two players by G≥2

nz .

Theorem 2.6. The PD value is the unique value on G≥2
nz that satisfies proportional stan-

dardness and projection consistency.

Replacing proportional standardness by standardness in Theorem 2.6 yields a
characterization of the equal surplus division value, as a special case of Theorem 4.4
in van den Brink et al. (2016).

Proposition 2.1 and Theorem 2.6 together imply the following corollary.

Corollary 2.2. The PD value is the unique value on G≥2
nz that satisfies efficiency,

proportional-balanced treatment, and projection consistency.

Due to efficiency, this corollary also holds on Gnz.

2.3.4 Characterizations for two-player games

In Subsection 2.3.3 we imposed proportional standardness to characterize the PD
value for any player set. Note that proportional standardness, as other two-player
standardness axiom, is a quite strong axiom since it coincides with the definition
of the PD value for two-player game. In this subsection, we support proportional
standardness by showing how the PD value can be characterized on the class of
two-player games. We first characterize the PD value for rational numbers, and then
apply continuity to obtain a characterization for real worths. Denote G2

nz = {(N, v) ∈
Gnz | |N| = 2} and G2

nzQ = {(N, v) ∈ G2
nz | v(S) ∈ Q for all S ⊆ N}, so the worths of

coalitions in games in G2
nzQ are rational numbers. In addition, Z, Z+ and Z− denote

the sets of integers, positive integers and negative integers, respectively.

We begin this subsection by introducing two additional axioms, the first on G2
nzQ

and the second on G2
nz.

• Grand worth additivity. For games (N, v), (N, w) ∈ G2
nzQ with N = {i, j} such

that v({i}) = w({i}) and v({j}) = w({j}), it holds that ψ(N, v) + ψ(N, w) =

ψ(N, v ⊕ w), where (N, v ⊕ w) is defined as: (v ⊕ w)({i}) = v({i}), (v ⊕
w)({j}) = v({j}) and (v⊕ w)(N) = v(N) + w(N).
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• Inessential game property for two-player games. For every game (N, v) ∈
G2

nz with N = {i, j} such that v({i})+ v({j}) = v({i, j}), it holds that ψi(N, v) =
v({i}) and ψj(N, v) = v({j}).

Grand worth additivity states that for two games in which all worths are rational
numbers and the stand-alone worths are the same, we consider the game where the
stand-alone worths are the same as in the original game, and the worth of the grand
coalition equals the sum of the worths of the grand coalition in the two games, then
the payoff to each player equals the sum of the payoffs in the two separate games.
This axiom is similar to additivity in Moulin (1987) and Chun (1988) for bankruptcy
problems. The inessential game property is a well-known axiom requiring that play-
ers earn their stand-alone payoff in an inessential game. In this subsection we re-
quire the inessential game property only for two-player games.

First, we show that these two axioms characterize the PD value on the class of
two-player games with rational worths.

Proposition 2.3. The PD value is the unique value on G2
nzQ that satisfies grand worth

additivity and the inessential game property for two-player games.

Next, adding continuity for two-player games, which states that if two games are
almost the same then their payoffs are almost the same, we can extend this result
from rational numbers to real numbers.

• Continuity for two-player games. For all sequences of games {(N, wk)} and
game (N, v) in G2

nz such that lim
k→∞

(N, wk) = (N, v), it holds that lim
k→∞

ψ(N, wk) =

ψ(N, v).

Theorem 2.7. The PD value is the unique value on G2
nz that satisfies grand worth additivity,

the inessential game property for two-player games, and continuity for two-player games.

By Theorems 2.6 and 2.7, we immediately obtain the following corollary.

Corollary 2.3. The PD value is the unique value on G≥2
nz that satisfies grand worth

additivity, the inessential game property, continuity for two-player games, and pro-
jection consistency.

Corollary 2.3 is valid on Gnz if we require the inessential game property for all
games in Gnz, i.e., for every game (N, v) ∈ Gnz such that v(S) = ∑i∈S v({i}), it holds
that ψi(N, v) = v({i}) for all i ∈ N.

Remark 2.5. One can easily check that each of the following two axioms together
with the inessential player property on G2

nz characterize the PD value.

• Grand worth proportionality. For two games (N, v), (N, w) ∈ G2
nz and α ∈ R

such that N = {i, j}, v({i}) = w({i}), v({j}) = w({j}) and w(N) = αv(N), it
holds that ψ(N, w) = αψ(N, v).
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• Relational covariance. For two games (N, v), (N, w) ∈ G2
nz and α ∈ R such

that N = {i, j}, v({i}) = w({i}), v({j}) = w({j}) and w(N) = v(N) +

α[v({i}) + v({j})], it holds that ψi(N, w) = ψi(N, v) + αv({i}) and ψj(N, w) =

ψj(N, v) + αv({j}).

From Remark 2.5 and Theorem 2.6, we have that the PD value on G≥2
nz is char-

acterized by the inessential game property, projection consistency, and either grand
worth proportionality or relational covariance.

Remark 2.6. Ortmann (2000) introduced his proportional value 6 that can be char-
acterized by proportional standardness and consistency due to Hart and Mas-Colell
(1989). As a consequence, characterizations of Ortmann’s proportional value can
be obtained by replacing proportional standardness by the axioms in Theorem 2.7
or Remark 2.5. Notice that we cannot use the axiomatization as given by Proposi-
tion 2.1, since proportional-balanced treatment is not satisfied by Ortmann’s propor-
tional value for games with more than two players.

2.4 Independence of axioms

Logical independence of the axioms used in the characterization results can be shown
by the following alternative values.

Theorem 2.3:

(i) The value ψ on GN
nz defined for all (N, v) ∈ GN

nz and all i ∈ N, by

ψi(N, v) = v({i}) (2.7)

satisfies all axioms, but not efficiency.

(ii) Let Dv be the set of all dummy players and all dummifying players in (N, v).
The value ψ on GN

nz defined for each (N, v) ∈ GN
nz and each i ∈ N, by

ψi(N, v) =

v({i}), if i ∈ Dv,
v({i})

∑j∈N\Dv v({j})
[
v(N)−∑j∈Dv

v({j})
]
, otherwise.

satisfies all axioms, but not weak linearity.

(iii) The ESD value on GN
nz satisfies all axioms, but not proportional-balanced treat-

ment.
6Ortmann’s proportional value is recursively defined for all (N, v) ∈ Gnz+ and i ∈ S by

ψi(S, v|S) = v(S)
(

1 + ∑
j∈S\{i}

ψj(S\{i}, v|S\{i})
ψi(S\{j}, v|S\{j})

)
if |S| > 1, and ψi(S, v|S) = v({i}) if |S| = 1. Here, for any S ⊆ N, (S, v|S) is defined by v|S(T) = v(T)
for all T ⊆ S.
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(iv) The value defined for all (N, v) ∈ GN
nz and all i ∈ N, by

ψi(N, v) =
v({i})

∑k∈N v({k})

[
v(N)− v(N\{i}) + ∑

h∈N

v({h})v(N\{h})
∑k∈N v({k})

]
(2.8)

satisfies all axioms, but not the dummifying player property. Clearly, (2.8)

coincides with (2.2) by taking λS =
∑j∈S v({j})∑j∈N\S v({j})

(∑k∈N v({k}))2 for all S ⊂ N with
|S| = n− 1, and λS = 0 otherwise.

Remark 2.7. Notice that (2.8) also coincides with (2.6) by taking ψ′(N, v) = EANSC(N, v),
see (1.2). The calculation is shown as follows. Substituting the EANSC value into
(2.6) , we have

ψi(N, v) =
v({i})

∑k∈N v({k})ψ′i(N, v) +
v({i})

∑k∈N v({k})

[
v(N)− ∑

h∈N

v({h})ψ′h(N, v)
∑k∈N v({k})

]
=

v({i})
∑k∈N v({k})

[
SCi +

1
n
[v(N)− ∑

j∈N
SCj]

]
+

v({i})
∑k∈N v({k})

[
v(N)− ∑

h∈N

v({h})
[
SCh +

1
n [v(N)−∑j∈N SCj]

]
∑k∈N v({k})

]
=

v({i})
∑k∈N v({k})

[
SCi +

1
n
[v(N)− ∑

j∈N
SCj]

]
+

v({i})
∑k∈N v({k})

[
v(N)− ∑

h∈N

v({h})SCh

∑k∈N v({k}) − ∑
h∈N

v({h})
∑k∈N v({k})

1
n
[v(N)− ∑

j∈N
SCj]

]
=

v({i})
∑k∈N v({k})

[
SCi +

1
n
[v(N)− ∑

j∈N
SCj]

]
+

v({i})
∑k∈N v({k})

[
v(N)− ∑

h∈N

v({h})SCh

∑k∈N v({k}) −
1
n
[v(N)− ∑

j∈N
SCj]

]
=

v({i})
∑k∈N v({k})

[
SCi + v(N)− ∑

h∈N

v({h})SCh

∑k∈N v({k})

]
=

v({i})
∑k∈N v({k})

[
v(N)− v(N\{i}) + v(N)− ∑

h∈N

v({h})[v(N)− v(N\{h})]
∑k∈N v({k})

]
=

v({i})
∑k∈N v({k})

[
v(N)− v(N\{i}) + v(N)− v(N) + ∑

h∈N

v({h})v(N\{h})
∑k∈N v({k})

]
=

v({i})
∑k∈N v({k})

[
v(N)− v(N\{i}) + ∑

h∈N

v({h})v(N\{h})
∑k∈N v({k})

]
,

which coincides with (2.8).

Theorem 2.4:

(i) The value defined by (2.7) satisfies all axioms, but not efficiency.

(ii) The ESD value on GN
nz satisfies all axioms, but not proportional-balanced treat-

ment.
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(iii) The value defined by (2.8) satisfies all axioms, but neither weak coalitional sur-
plus equivalence nor weak coalitional surplus monotonicity.

Theorem 2.5:

(i) The value defined by (2.7) satisfies all axioms, but not efficiency.

(ii) The ED value on GN
nz satisfies all axioms, but not weak proportional-balanced

treatment.

(iii) The value defined by (2.8) satisfies all axioms, but not weak coalitional mono-
tonicity.

Theorem 2.6:

(i) Ortmann’s proportional value satisfies proportional standardness, but not pro-
jection consistency.

(ii) The ESD value on GN
nz satisfies projection consistency, but not proportional stan-

dardness.

Theorem 2.7:

(i) The value defined by (2.7) satisfies all axioms, but not grand worth additivity.

(ii) The ED value on G2
nz satisfies all axioms, but not the inessential game property

for two-player games.

(iii) The value ψ defined for all (N, v) ∈ GN
nz and all i ∈ N, by

ψi(N, v) =

PDi(N, v), if v(N) ∈ Q,

ESDi(N, v), if v(N) 6∈ Q.

satisfies all axioms, but not continuity for two-player games.

2.5 Proofs

Proof of Proposition 2.1. It is clear that the PD value satisfies the two axioms. Con-
versely, let ψ be a value satisfying the two axioms. Since the two players in a two-
player game (N, v) ∈ GN

nz are always weak symmetric, by proportional-balanced
treatment, ψi(N,v)

v({i}) =
ψj(N,v)
v({j}) for i, j ∈ N. By efficiency, ψi(N, v) + ψj(N, v) = v(N).

Therefore, we obtain ψk(N, v) = v({k})
v({i})+v({j})v(N), k ∈ {i, j}, as desired.
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Proof of Theorem 2.1. Existence: It is straightforward to show that any value de-
fined by (2.2) satisfies efficiency and weak linearity. Next, we show that it also
satisfies proportional-balanced treatment. Let i, k ∈ N be two players such that
v(S ∪ {i}) = v(S ∪ {k}) for all S ⊆ N\{i, k}, S 6= ∅. We have

ψi(N, v)
v({i}) −

ψk(N, v)
v({k})

= ∑
S:i∈S,k 6∈S
|S|≥2

λS
∑j∈S v({j})v(S)− ∑

S:i 6∈S,k∈S
|S|≥2

λS
∑j∈N\S v({j})v(S)

−
[

∑
S:k∈S,i 6∈S
|S|≥2

λS
∑j∈S v({j})v(S)− ∑

S:k 6∈S,i∈S
|S|≥2

λS
∑j∈N\S v({j})v(S)

]
= ∑

S:i,k 6∈S
|S|≥1

λS∪{i}
∑j∈S v({j})+v({i})v(S ∪ {i})− ∑

S:i,k 6∈S
|S|≥1

λS∪{k}
∑j∈N\S v({j})−v({k})v(S ∪ {k})

−
[

∑
S:i,k 6∈S
|S|≥1

λS∪{k}
∑j∈S v({j})+v({k})v(S ∪ {k})− ∑

S:i,k 6∈S
|S|≥1

λS∪{i})
∑j∈N\S v({j})−v({i})v(S ∪ {i}

]
= ∑

S:i,k 6∈S
|S|≥1

λS∪{i}
∑j∈S v({j})+v({i})v(S ∪ {i}) + ∑

S:i,k 6∈S
|S|≥1

λS∪{i}
∑j∈N\S v({j})−v({i})v(S ∪ {i})

−
[

∑
S:i,k 6∈S
|S|≥1

λS∪{k}
∑j∈N\S v({j})−v({k})v(S ∪ {k}) + ∑

S:i,k 6∈S
|S|≥1

λS∪{k}
∑j∈S v({j})+v({k})v(S ∪ {k})

]
= ∑

S:i,k 6∈S
|S|≥1

∑j∈N v({j})λS∪{i}v(S∪{i})
[∑j∈S v({j})+v({i})][∑j∈N\S v({j})−v({i})] − ∑

S:i,k 6∈S
|S|≥1

∑j∈N v({j})λS∪{k}v(S∪{k})
[∑j∈S v({j})+v({k})][∑j∈N\S v({j})−v({k})]

= ∑
S:i,k 6∈S
|S|≥1

∑j∈N v({j})λS∪{k}v(S∪{i})
[∑j∈S v({j})+v({k})][∑j∈N\S v({j})−v({k})] − ∑

S:i,k 6∈S
|S|≥1

∑j∈N v({j})λS∪{k}v(S∪{k})
[∑j∈S v({j})+v({k})][∑j∈N\S v({j})−v({k})]

=0,

where the fifth equality follows by (2.3). Thus, (2.2) satisfies proportional-balanced
treatment.

Uniqueness: Let ψ be a value satisfying efficiency, weak linearity, and proportional-
balanced treatment. For |N| = 1 and |N| = 2, uniqueness follows from efficiency
and Proposition 2.1, respectively. Now let (N, v) ∈ GN

nz be an arbitrary game with
|N| ≥ 3. In order to use the property of weak linearity, we decompose (N, v) into
the unique combination of the following two kinds of games (N, w) and (N, wS) 7.
The game (N, w) is defined as follows:

w(T) =

v({i}), if T = {i} for all i ∈ N,

0, otherwise.

7For any (N, v) ∈ GN
nz, the collection of games {(N, w), (N, wS)S⊆N,|S|≥2} is a basis of the class of

games GN
v = {(N, v′) ∈ GN

nz | ∃c ∈ R such that v′({i}) = cv({i}) for all i ∈ N} ∪ {(N, v) ∈ GN |
v({i}) = 0 for all i ∈ N}. The dimension of GN

v is 2n − n. Another interesting basis can be found in the
proof of Proposition 5 in Béal et al. (2018) or in van den Brink et al. (2020).
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For any coalition S ⊆ N with |S| ≥ 2, the game (N, wS) is defined as follows:

wS(T) =


v({i}), if T = {i} for all i ∈ N,

1, if T = S,

0, otherwise.

One can easily check that (N, v) can be written as v = I(v)w + ∑
S⊆N,|S|≥2

v(S)wS,

where I(v) = 1−∑S⊆N,|S|≥2 v(S). By weak linearity8, we have

ψi(N, v) = I(v)ψi(N, w) + ∑
S⊆N,|S|≥2

v(S)ψi(N, wS) for all i ∈ N.

Now, by proportional-balanced treatment, for each S ⊂ N with |S| ≥ 2, since
all players in S are weak symmetric in (N, wS), and the same for all players in N\S,
there must exist some λS and µS such that

ψi(N, wS) =


v({i})

∑j∈S v({j})λS, if i ∈ S,
v({i})

∑j∈N\S v({j})µS, if i 6∈ S.
(2.9)

By efficiency, it must be ∑i∈S
v({i})

∑j∈S v({j})λS +∑i∈N\S
v({i})

∑j∈N\S v({j})µS = 0, which shows

λS = −µS. Similarly, ψi(N, wN) = v({i})
∑j∈N v({j}) for all i ∈ N. Meanwhile, we have

ψ(N, w) = 0. Putting all together we have the expression of ψ as given by (2.2).

Accordingly, let us see that λS only depends on the size of S (S 6= N) and the
worths of all singleton coalitions {i}, i ∈ N. Let S ⊂ N, S 6= ∅ with i, j 6∈ S, and con-
sider the game (N, wS∪{i} + wS∪{j}). In this game, since i and j are weak symmetric,
it must be that 1

v({i})ψi(N, wS∪{i}+ wS∪{j}) = 1
v({j})ψj(N, wS∪{i}+ wS∪{j}). With (2.9)

and weak linearity, we have that

1
∑k∈S∪{i} v({k})λS∪{i} −

1
∑k∈N\(S∪{j}) v({k})λS∪{j}

=
1

∑k∈S∪{j} v({k})λS∪{j} −
1

∑k∈N\(S∪{i}) v({k})λS∪{i},

from which it immediately follows that

λS∪{i}

∑k∈S∪{i} v({k})∑k∈N\(S∪{i}) v({k}) =
λS∪{j}

∑k∈S∪{j} v({k})∑k∈N\(S∪{j}) v({k}) .

Therefore, whenever S and T are of the same size, replacing player by player, we can
form a sequence with at most s + 1 coalitions, such that the first one is S, and any
of them is the result of replacing a player of S by a player of N\S. In this way, we

8To ensure that we stay in the class GN
nz, we should consider the games in which their coefficients

are nonzero in a suitable ordering, just like the technical approach as given by Lemma 5 in Béal et al.
(2018).
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conclude the relationship between λS and λT given by (2.3).

Proof of Theorem 2.2. Let ψ be a value satisfying these axioms. First, suppose that
|N| ≥ 4. Consider any game (N, v) ∈ GN

nz and i ∈ N being a dummy player in
(N, v). By Theorem 2.1, we have

ψi(N, v) = v({i})
∑j∈N v({j})v(N) + ∑

S:i∈S 6=N
|S|≥2

v({i})·λS
∑j∈S v({j})v(S)− ∑

S:i 6∈S
|S|≥2

v({i})·λS
∑j∈N\S v({j})v(S)

= v({i})v(N)
∑j∈N v({j}) + ∑

S:i 6∈S
1≤|S|≤n−2

v({i})·λS∪{i}
∑j∈S∪{i} v({j})v(S ∪ {i})− ∑

S:i 6∈S
|S|≥2

v({i})·λS
∑j∈N\S v({j})v(S)

= v({i})[v(N\{i})+v({i})]
∑j∈N v({j}) + ∑

j∈N\{i}

v({i})·λ{i,j}
v({i})+v({j})v({i, j})− λN\{i}v(N\{i})

+ ∑
S:i 6∈S

2≤|S|≤n−2

[ v({i})·λS∪{i}
∑j∈S∪{i} v({j})v(S ∪ {i})− v({i})·λS

∑j∈N\S v({j})v(S)
]

= v({i})v({i})
∑j∈N v({j}) + v({i}) ∑

j∈N\{i}
λ{i,j} + [ v({i})

∑j∈N v({j}) − λN\{i}]v(N\{i})

+ ∑
S:i 6∈S

2≤|S|≤n−2

v({i})·λS∪{i}
∑j∈S∪{i} v({j})v({i}) + ∑

S:i 6∈S
2≤|S|≤n−2

[ v({i})·λS∪{i}
∑j∈S∪{i} v({j}) −

v({i})·λS
∑j∈N\S v({j})

]
v(S),

where the third equality follows from i being a dummy player in (N, v).

Since, by the dummy player property, the payoff of dummy player i should not
depend on v(S), i 6∈ S and 2 ≤ |S| ≤ n− 1, the third term and the fifth term of the
above equation must be equal to 0, which yields

λN\{i} =
v({i})

∑j∈N v({j}) , (2.10)

λS∪{i}
λS

=
∑j∈S∪{i} v({j})
∑j∈N\S v({j}) for S ⊂ N with 2 ≤ |S| ≤ n− 2. (2.11)

Since λS for each S ⊂ N with |S| ≥ 2 satisfies (2.3), then (2.10) and (2.3) together
imply that, for any k1 ∈ N\{i},

λN\{k1} =
v({k1})∑j∈N\{k1} v({j})

∑j∈N\{i} v({j})∑j∈N v({j}) .

By using (2.11), we have

λN\{i,k1} =
∑j∈{i,k1} v({j})

∑j∈N\{k1} v({j})λN\{k1}

=
v({k1})∑j∈{i,k1} v({j})

∑j∈N\{i} v({j})∑j∈N v({j}) .
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The above equation together with (2.3) imply that, for any k2 ∈ N\{i, k1},

λN\{k1,k2} =
∑j∈N\{k1,k2} v({j})∑j∈{k1,k2} v({j})
∑j∈N\{i,k1} v({j})∑j∈{i,k1} v({j}) λN\{i,k1}

=
∑j∈N\{k1,k2} v({j})∑j∈{k1,k2} v({j})v({k1})

∑j∈N\{i,k1} v({j})∑j∈N\{i} v({j})∑j∈N v({j}) .

Now, exchanging the order of k1 and k2, we have

λN\{k1,k2} =
∑j∈N\{k1,k2} v({j})∑j∈{k1,k2} v({j})v({k2})

∑j∈N\{i,k2} v({j})∑j∈N\{i} v({j})∑j∈N v({j}) .

Therefore, it must be that

v({k1})
∑j∈N\{i,k1} v({j}) =

v({k2})
∑j∈N\{i,k2} v({j}) ,

from which it follows that v({k1}) = v({k2}) for any k1, k2 ∈ N\{i}, i.e. all stand-
alone worths except v({i}) must be the same. This contradicts the definition of GN

nz.

Next, suppose that |N| = 3. Consider (N, v) ∈ GN
nz with N = {i, j, k} and i ∈ N

such that i is a dummy player in (N, v). By Theorem 2.1 and i being a dummy player,
we have

ψi(N, v) = v({i})[v({j,k})+v({i})]
v({i})+v({j})+v({k}) + v({i})

(
λ{i,j}(v({i})+v({j}))

v({i})+v({j}) +
λ{i,k}(v({i})+v({k}))

v({i})+v({k}) − λ{j,k}v({j,k})
v({i})

)
= v({i})[v({j,k})+v({i})]

v({i})+v({j})+v({k}) + v({i})(λ{i,j} + λ{i,k})− λ{j,k}v({j, k})

=v({j, k})
(

v({i})
v({i})+v({j})+v({k}) − λ{j,k}

)
+ v({i})

(
v({i})

v({i})+v({j})+v({k}) + λ{i,j} + λ{i,k}

)
.

By the dummy player property, we have ψi(N, v) = v({i}). Since ψi(N, v) should
not depend on v({j, k}), it must be that v({i})

v({i})+v({j})+v({k}) − λ{j,k} = 0, and thus

λ{j,k} =
v({i})

v({i}) + v({j}) + v({k}) . (2.12)

But then

v({i})
v({i}) + v({j}) + v({k}) + λ{i,j} + λ{i,k} = 1,

implying that

λ{i,j} + λ{i,k} =
v({j}) + v({k})

v({i}) + v({j}) + v({k}) . (2.13)
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Meanwhile, (2.3) implies that

λ{j,k}
[v({j}) + v({k})]v({i}) =

λ{i,j}
[v({i}) + v({j})]v({k}) =

λ{i,k}
[v({i}) + v({k})]v({j}) .

It follows that

λ{j,k}
[v({j}) + v({k})]v({i}) =

λ{i,j} + λ{i,k}
[v({i}) + v({j})]v({k}) + [v({i}) + v({k})]v({j}) .

(2.14)

Substituting (2.12) and (2.13) into (2.14) yields

(v({j}))2 + (v({k}))2 = v({i})v({k}) + v({i})v({j}),

which does not hold for all games in GN
nz.

Proof of Theorem 2.3. It is obvious that the PD value satisfies efficiency, weak lin-
earity, proportional-balanced treatment, and the dummifying player property. It
remains to prove the uniqueness part. Let ψ be a value satisfying these axioms.
By Theorem 2.1, any value satisfying efficiency, weak linearity and proportional-
balanced treatment is given by (2.2) for some λS (S ⊆ N, |S| ≥ 2) satisfying (2.3). To
derive λS, we consider a modified game (N, vi) ∈ GN

nz with respect to (N, v) ∈ GN
nz

and i ∈ N, defined by

vi(S) =


v({j}), if S = {j} for all j ∈ N,

∑j∈S v({j}), if i ∈ S and |S| ≥ 2,

v(S), otherwise.

Applying (2.2) to the game (N, vi), we have

ψi(N, vi) = v({i}) + v({i})
[

∑
S:i∈S 6=N
|S|≥2

λS − ∑
S:i 6∈S
|S|≥2

λSv(S)
∑j∈N\S v({j})

]
.

Since i is dummifying in (N, vi), the dummifying player property requires that
ψi(N, vi) = v({i}), and thus

∑
S:i∈S 6=N
|S|≥2

λS − ∑
S:i 6∈S
|S|≥2

λSv(S)
∑j∈N\S v({j}) ≡ 0.

It follows that

n−1

∑
s=2

[
∑
S:i∈S
|S|=s

λS − ∑
S:i 6∈S
|S|=s

λSv(S)
∑j∈N\S v({j})

]
≡ 0. (2.15)
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We will show that λS = 0 for all S ⊂ N in (2.15). Suppose by contradiction
that there exist some S ⊂ N with s ∈ {2, . . . , n− 1} such that λS 6= 0 and |S| = s.
Let S = {s1, s2, . . . , sm} be the set of such coalitional sizes. Note that (2.3) implies
that if λS 6= 0, then all coefficients of coalitions of the same size s are not equal
to zero. We denote by Sk = {S1

k , S2
k , . . . , Sh

k}, k = 1, . . . , m, h = (n
sk
), the set of all

coalitions of the same size sk ∈ S . Pick any Sr
k ∈ Sk with i ∈ Sr

k. By (2.3), we

have λSt
k
=

∑j∈St
k

v({j})∑j∈N\St
k

v({j})

∑j∈Sr
k

v({j})∑j∈N\Sr
k

v({j})λSr
k

for any St
k ∈ Sk (it obviously holds for the case

St
k = Sr

k). With this equality, (2.15) can be written as

∑
sk∈S

[
A(Sk)− ∑

St
k∈Sk ,i 6∈St

k

B(St
k)v(S

t
k)
]
λSr

k
= 0, (2.16)

where A(Sk) = ∑
St

k∈Sk ,i∈St
k

∑j∈St
k

v({j})∑j∈N\St
k

v({j})

∑j∈Sr
k

v({j})∑j∈N\Sr
k

v({j}) and B(St
k) =

∑j∈St
k

v({j})

∑j∈Sr
k

v({j})∑j∈N\Sr
k

v({j}) .

Now, pick any sl ∈ {s1, s2, . . . , sm} and any c ∈ R\{0}, and consider the game
(N, vi,sl ) ∈ GN

nz given by

vi,sl (S) =

vi(S) + c, if |S| = sl and i 6∈ S,

vi(S), otherwise.

Note that (2.3) shows that λS only depends on the size of S and the worths of all
singleton coalitions. Therefore, since i is a dummifying player in (N, vi,sl ), for this
game we can obtain an equation similar as (2.16) but with an additional term that
depends on c,

∑
sk∈S

[
A(Sk)− ∑

St
k∈Sk ,i 6∈St

k

B(St
k)v(S

t
k)
]
λSr

k
− cλSr

l ∑
St

l∈Sl ,i 6∈St
l

B(St
l) = 0.

Together with this equation and (2.16), it holds that −cλSr
l
∑St

l∈Sl ,i 6∈St
l
B(St

l) = 0,
yielding λSr

l
= 0, which is a contradiction.

Proof of Lemma 2.1. Suppose that value ψ satisfies weak coalitional surplus mono-
tonicity. Consider a pair of games (N, v), (N, v + w) ∈ GN

nz, where v({j}) = w({j})
for all j ∈ N, and i ∈ N being a dummifying player such that w(S) = ∑j∈S w({j}) for
all S ⊆ N with i ∈ S. Since (v + w)(S)−∑j∈S(v + w)({j}) = v(S)−∑j∈S v({j}) for
all S ⊆ N with i ∈ S, by weak coalitional surplus monotonicity, we have ψi(N, v +

w) − (v + w)({i}) = ψi(N, v) − v({i}). It follows that ψi(N, v + w) = ψi(N, v) +
w({i}), which shows that ψ satisfies weak coalitional surplus equivalence.

Proof of Theorem 2.4. (i) It is clear that the PD value satisfies efficiency, proportional-
balanced treatment, and weak coalitional surplus equivalence. Now, let ψ be a value
on GN

nz satisfying the three axioms. For |N| = 1, (2.1) is satisfied by efficiency. For
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|N| = 2, (2.1) is obtained from Proposition 2.1. For |N| ≥ 3, uniqueness follows by
induction on d(v) = |{T ⊆ N | v(T)− 1

2 ∑j∈T v({j}) 6= 0 and |T| ≥ 2}|. For any
(N, v) ∈ GN

nz, define (N, v0) ∈ GN
nz as follows:

v0(T) = v(T)− 1
2 ∑

j∈T
v({j}) for all T ⊆ N. (2.17)

Intialization. If d(v) = 0, then v(N) = 1
2 ∑j∈N v({j}). Notice that, by d(v) =

0, in this case v0(T) = 0 for all T ⊆ N with |T| ≥ 2. Clearly, all players i, j ∈
N are weak symmetric in (N, v0) and v0(N) = 0. By efficiency and proportional-
balanced treatment, we have ψi(N, v0) = 0 for all i ∈ N. Notice that (v− v0)({i}) =
v({i})− v({i}) + 1

2 v({i}) = 1
2 v({i}) for all i ∈ N, and all players are dummifying

in (N, v − v0) since (v − v0)(T) = v(T) − v(T) + 1
2 ∑j∈T v({j}) = 1

2 ∑j∈T v({j}) =

∑j∈T(v− v0)({j}). By weak coalitional surplus equivalence, ψi(N, v) = ψi(N, v0 +

(v− v0)) = ψi(N, v0) + 1
2 v({i}) for all i ∈ N. Thus, ψi(N, v) = 1

2 v({i}) = PDi(N, v)
for all i ∈ N.

Proceeding by induction, assume that ψ(N, w) = PD(N, w) for all (N, w) ∈ GN
nz

with d(w) = h, 0 ≤ h ≤ 2n− n− 2. Consider (N, v) ∈ GN
nz such that d(v) = h+ 1. Let

S = {S1, S2, . . . , Sh+1} be the set of coalitions such that v(Sk)− 1
2 ∑j∈Sk

v({j}) 6= 0
and |Sk| ≥ 2. Let S be the intersection of all such coalitions Sk, i.e., S =

⋂
1≤k≤h+1

Sk.

We distinguish between two cases:

Case (a): i ∈ N\S. Each player i ∈ N\S is a member of at most h coalitions in S ,
and at least one Sk ∈ S such that i 6∈ Sk (obviously, Sk 6= N). For (N, v) ∈ GN

nz,
define three associated games as follows:

vSk ,1(T) =

0, if T = Sk,

v(T)− 1
2 ∑j∈T v({j}), otherwise.

vsk ,2(T) =

v(T), if T = Sk,
1
2 ∑j∈T v({j}), otherwise.

v3(T) =
1
2 ∑

j∈T
v({j}), for all T ⊆ N.

Clearly, v = vSk ,1 + vSk ,2, vSk ,1({j}) = vSk ,2({j}) = 1
2 v({j}) for all j ∈ N, vSk ,1(N) =

v(N)− 1
2 ∑j∈N v({j}) (since Sk 6= N), and every player i ∈ N\Sk is dummifying

in (N, vSk ,2). By weak coalitional surplus equivalence, ψi(N, v) = ψi(N, vSk ,1) +
1
2 v({i}) for all i ∈ N\Sk. Moreover, d(vSk ,1 + v3) = h, and every player i ∈ N is
dummifying in (N, v3). Thus, weak coalitional surplus equivalence and the induc-
tion hypothesis imply that ψi(N, vSk ,1 + v3) = ψi(N, vSk ,1)+ v3({i}) = ψi(N, vSk ,1)+
1
2 v({i}) = v({i})

∑j∈N v({j}) [v
Sk ,1(N) + v3(N)] = v({i})

∑j∈N v({j})v(N) for all i ∈ N. It follows

that ψi(N, vSk ,1) = v({i})
∑j∈N v({j})v(N)− 1

2 v({i}) for all i ∈ N.
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Therefore, ψi(N, v) = v({i})
∑j∈N v({j})v(N) = PDi(N, v) for all i ∈ N\Sk. Since there

exists such a Sk for all i ∈ N\S, we obtain ψi(N, v) = PDi(N, v) for all i ∈ N\S.

Case (b): i ∈ S. If S = {i}, we obtain, by efficiency of ψ and PD and case (a),
ψi(N, v) = PDi(N, v). If |S| ≥ 2, each player j ∈ S is a member of all coalitions
in S . We consider the game (N, v0) as defined by (2.17). Clearly, all players i, j ∈
S are weak symmetric in (N, v0), and thus by proportional-balanced treatment,
ψi(N,v0)

v({i}) =
ψj(N,v0)

v({j}) for all i, j ∈ S. Since v = v0 + (v− v0) and all players are dummi-
fying in (N, v− v0), and thus by weak coalitional surplus equivalence, ψj(N, v) =
ψj(N, v0) + v({j})

2 for all j ∈ S. Hence, ∑j∈S ψj(N, v) = ∑j∈S(ψj(N, v0) + v({j})
2 ) =

∑j∈S
v({j})
v({i})ψi(N, v0) +

∑j∈S v({j})
2 for any i ∈ S. On the other hand, by efficiency and

Case (a), ∑j∈S ψj(N, v) = v(N) − ∑j∈N\S ψj(N, v) = v(N) − ∑j∈N\S PDi(N, v) =
∑j∈S v({j})
∑k∈N v({k})v(N). Therefore, ∑j∈S

v({j})
v({i})ψi(N, v0) +

∑j∈S v({j})
2 =

∑j∈S v({j})
∑k∈N v({k})v(N). Since

∑j∈S v({j}) 6= 0, then ψi(N, v0) = v({i})
∑k∈N v({k})v(N) − v({i})

2 , and thus ψi(N, v) =

PDi(N, v) for all i ∈ S.

The proof of (i) is complete.

(ii) Since it is obvious that the PD value satisfies efficiency and proportional-
balanced treatment, we only show that the PD value satisfies weak coalitional sur-
plus monotonicity. Clearly, w({j}) = cv({j}) for all j ∈ N and v(S)−∑j∈S v({j}) ≥
w(S)−∑j∈S w({j}) for all S ⊆ N with i ∈ S, imply that v(N) ≥ w(N)−∑j∈N w({j})+
∑j∈N v({j}) = w(N) − ∑j∈N w({j}) + ∑j∈N

w({j})
c = w(N) − (1− 1

c )∑j∈N w({j}).
Thus, we obtain PDi(N, v) = v({i})

∑j∈N v({j})v(N) = w({i})
∑j∈N w({j})v(N) ≥ w({i})

∑j∈N w({j}) [w(N)−
(1 − 1

c )∑j∈N w({j})] = PDi(N, w) − w({i}) + 1
c w({i}) = PDi(N, w) − w({i}) +

v({i}).
Uniqueness follows from Theorem 2.4(i) and Lemma 2.1.

Proof of Lemma 2.2. Let (N, v), (N, w) ∈ GN
nz be two games such that v({j}) =

w({j}) for all j ∈ N, and i ∈ N is dummifying in (N, w). The dummifying player
property implies that ψi(N, w) = w({i}). Then weak additivity implies that ψi(N, v+
w) = ψi(N, v) + ψi(N, w) = ψi(N, v) + w({i}), as desired.

Proof of Theorem 2.5. We already know that the PD value satisfies efficiency and
weak proportional-balanced treatment. Weak coalitional monotonicity is satisfied
since v(S) ≥ w(S) for all S ⊆ N with i ∈ S, implies that v(N) ≥ w(N) and thus
PDi(N, v) = v({i})

∑j∈N v({j})v(N) = w({i})
∑j∈N w({j})v(N) ≥ w({i})

∑j∈N w({j})w(N) = PDi(N, w). To
show uniqueness, suppose that ψ is a value satisfying the three axioms. For any
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game (N, v) ∈ GN
nz, define the game (N, w) by

w(S) =


v(N), if S = N,

v({j}), if S = {j} for all j ∈ N,

min
T⊆N,|T|≥2

v(T), otherwise.

Efficiency and weak proportional-balanced treatment together imply that ψi(N, w) =
v({i})

∑j∈N v({j})v(N) for all i ∈ N. Pick any i ∈ N. Since v(S) ≥ w(S) for all S ⊆ N with i ∈

S, weak coalitional monotonicity implies that ψi(N, v) ≥ ψi(N, w) = v({i})
∑j∈N v({j})v(N).

Efficiency then implies that ψi(N, v) = v({i})
∑j∈N v({j})v(N) for all i ∈ N.

Proof of Proposition 2.2. For every (N, v) ∈ Gnz with |N| ≥ 3 and any j ∈ N,
(N\{j}, vx) ∈ Gnz.9 For x = PD(N, v) and i ∈ N\{j}, we have

PDi(N\{j}, vx) =
vx({i})

∑k∈N\{j} vx({k})vx(N\{j})

=
v({i})

∑k∈N\{j} v({k}) [v(N)− PDj(N, v)]

=
v({i})

∑k∈N\{j} v({k}) [v(N)− v({j})
∑k∈N v({k})v(N)]

=
v({i})

∑k∈N v({k})v(N)

= PDi(N, v).

Remark 2.8. If the definition of projection consistency (see Definition 2.3) is applied
on Gnz with |N| ≥ 2, then Proposition 2.2 is valid on Gnz. The proof of the case
|N| = 2 is given as footnote 9.

Proof of Theorem 2.6. It is straightforward to show that the PD value satisfies pro-
portional standardness. Projection consistency follows from Proposition 2.2. To
show the ‘only if’ part, suppose that ψ is a value satisfying proportional standard-
ness and projection consistency.

If |N| = 2, then ψ(N, v) = PD(N, v) follows from proportional standardness.

Proceeding by induction, for |N| ≥ 3, suppose that ψ(N′, w) = PD(N′, w) when-
ever |N′| = |N| − 1. Take any i, j ∈ N such that i 6= j. Let x = ψ(N, v) and

9Notice that, if (N, v) ∈ Gnz with |N| = 2 and v(N) = 0, then for x = PD(N, v), we have that
xi = xj = 0, and thus (N\{j}, vx) 6∈ Gnz for any j ∈ N. In case v(N) 6= 0, for x = PD(N, v), we have
(N\{j}, vx) ∈ Gnz, since [v({i}) > 0⇒ PDj(N, v) < v(N)⇒ vx({i}) > 0] (similar if v({i}) < 0).
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y = PD(N, v). For the two reduced games (N\{j}, vx) and (N\{j}, vy), by the in-
duction hypothesis, we have

xi − yi = ψi(N\{j}, vx)− PDi(N\{j}, vy)

= PDi(N\{j}, vx)− PDi(N\{j}, vy). (2.18)

By definition of the PD value and the projection reduced game, we have

PDi(N\{j}, vx)− PDi(N\{j}, vy)

=
vx({i})

∑k∈N\{j} vx({k}) (v(N)− xj)−
vy({i})

∑k∈N\{j} vy({k}) (v(N)− yj)

=
v({i})

∑k∈N\{j} v({k}) (yj − xj).

Together with (2.18), this implies that, for all i, j ∈ N with i 6= j,

xi − yi =
v({i})

∑k∈N\{j} v({k}) (yj − xj). (2.19)

Summing (2.19) over all i ∈ N\{j} yields

∑
i∈N\{j}

(xi − yi) =
∑i∈N\{j} v({i})
∑k∈N\{j} v({k}) (yj − xj) = yj − xj. (2.20)

On the other hand, (2.19) can be written as v({i})(yj − xj) = ∑k∈N\{j} v({k})(xi −
yi). Summing this equality over all j ∈ N\{i}, we have

∑
j∈N\{i}

∑
k∈N\{j}

v({k})(xi − yi) = ∑
j∈N\{i}

v({i})(yj − xj)

⇔ ∑
j∈N\{i}

(
v({i})(xi − yi) + ∑

k∈N\{i,j}
v({k})(xi − yi)

)
= v({i}) ∑

j∈N\{i}
(yj − xj)

⇔[(|N| − 1)v({i}) + (|N| − 2) ∑
j∈N\{i}

v({j})](xi − yi) = v({i}) ∑
j∈N\{i}

(yj − xj).

(2.21)

Together with (2.20) and (2.21), it holds that (|N| − 2)(xi− yi)∑j∈N v({j}) = 0. Thus,
xi − yi = 0 for all i ∈ N. This shows that ψ(N, v) = PD(N, v).

Proof of Proposition 2.3. It is obvious that PD satisfies grand worth additivity and
the inessential game property for two-player games. To show uniqueness, suppose
that ψ is a value on G2

nzQ satisfying the two axioms. Let (N, v) ∈ G2
nzQ be an arbitrary

game with N = {i, j}. For any α ∈ Q, let the game (N, vα) be defined by vα({i}) =
v({i}), vα({j}) = v({j}) and vα(N) = αv(N). Clearly, (N, vα) ∈ G2

nzQ.
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If α = 0 then grand worth additivity implies that ψ(N, vα) = 0. For any α ∈
Z+, since (N, vα) = (N, vα−1 ⊕ v) = · · · = (N, v⊕ · · · ⊕ v︸ ︷︷ ︸

α

), grand worth additiv-

ity implies ψ(N, vα) = αψ(N, v). For any α ∈ Z−, since (N, vα ⊕ v⊕ · · · ⊕ v︸ ︷︷ ︸
|α|

) =

(N, v0), grand worth additivity and ψ(N, v0) = 0 (from above) imply ψ(N, vα) =

−|α|ψ(N, v) + ψ(N, v0) = αψ(N, v). Similarly, considering (N, v), for any α ∈ Z+,
(N, v) = (N, v

1
α ⊕ · · · ⊕ v

1
α︸ ︷︷ ︸

α

) implies that ψ(N, v) = αψ(N, v
1
α ); for any α ∈ Z−,

(N, v⊕ v
1
α ⊕ · · · ⊕ v

1
α︸ ︷︷ ︸

|α|

) = (N, v0) implies that ψ(N, v) = αψ(N, v
1
α ).

Next, take any α ∈ Q and consider the game (N, vα). Since any rational number
can be written as a fraction, we suppose that α = k

m with k ∈ Z and m ∈ Z\{0}.
Therefore,

ψ(N, vα) = ψ(N, v
k
m ) = kψ(N, v

1
m ) =

k
m

ψ(N, v) = αψ(N, v).

Take any game (N, v) ∈ G2
nzQ. Taking α = v({i})+v({j})

v(N)
, (N, vα) is an inessential

game, and thus by the inessential game property for two-player games, ψi(N, vα) =

vα({i}) = v({i}). Since ψ(N, vα) = αψ(N, v), we have

ψi(N, v) =
1
α

ψi(N, vα) =
v(N)v({i})

v({i}) + v({j}) .

Proof of Theorem 2.7. It is clear that PD satisfies the three axioms. To show unique-
ness, suppose that ψ is a value on G2

nz satisfying the three axioms. From Proposi-
tion 2.3, we already know ψ(N, v) = PD(N, v) for all (N, v) ∈ G2

nzQ. Now, take any
game (N, v) ∈ G2

nz, and let {(N, vm)} be a sequence of games in the class G2
nzQ such

that lim
m→∞

(N, vm) = (N, v). Using continuity for two-player games, we have

ψ(N, v) = lim
(N,vm)→(N,v)

ψ(N, vm) = lim
(N,vm)→(N,v)

PD(N, vm) = PD(N, v),

where the last equality holds since PD(N, v) is a continuous function with respect
to (N, v) ∈ G2

nz.

2.6 Conclusion

In this chapter, we have provided characterizations of the PD value for TU-games us-
ing axioms, such as proportional-balanced treatment, monotonicity, and consistency. It is
worth noting that proportional-balanced treatment, in some sense, reflects not only
equal treatment of equals but also unequal treatment of unequals. This axiom captures
this feature of the PD value. For games with at least three players, our axiomatic
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characterizations are similar to the characterizations of the ED value due to van den
Brink (2007) and van den Brink and Funaki (2009), and the characterizations of the
ESD value due to Casajus and Huettner (2014a). That is, most of them are obtained
by weakening one axiom while strengthening another axiom. This shows that the
PD value is axiomatically related to these two equal surplus sharing values.

The PD value is of interest for at least two reasons. First, the proportionality prin-
ciple is often considered as intuitive in various applications of TU-games. Especially,
it is desirable to have the option of treating players differently to reflect endogenous
characteristics. Second, proportional division methods are often employed in a lot
of applications such as bankruptcy problems, claims problems, cost allocation prob-
lems and so on.

The PD value depends only on the worths of one-person coalitions and the grand
coalition, but ignores the worths of any other intermediate coalitions. In Chapter 4,
we will show that the PD value, as well as a family of egalitarian values, is exactly
picked out from a larger family of values by imposing projection consistency. This
shows a merit of the PD value since the consistency principle is one of the fairness
criteria that are widely accepted notions in TU-games.

In the future, we will study other characterizations of the PD value based on
some existing characterizations of the ED value as well as the ESD value. Recall
that the combination of the PD value and the ED value for joint venture situations is
characterized by Moulin (1987). This motivates future research on characterizations
of the combination of the PD value and the ED value (or the ESD value) for general
TU-games.
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Chapter 3

Balanced Externalities and the
Proportional Allocation of
Nonseparable Contributions

3.1 Introduction

TU-games are applied in many profit and cost allocation problems in economics and
operations research. An example is the queueing problem. A queueing problem de-
scribes a situation where jobs need to be served on a machine one at a time. A queue
is efficient if jobs are served in a non-increasing order of their urgency indices. But
then the question is how jobs that are served later should be compensated for wait-
ing in the queue. One of the most popular solutions for such queueing problems is
the minimal transfer rule (Maniquet, 2003) which is obtained by applying the Shap-
ley value to an associated game. Queueing games are so-called 2-additive games 1,
or shortly 2-games, meaning that the worth is fully generated by coalitions of size
two. For a nonnegative 2-game, it is known that the Shapley value, and thus the
minimal transfer rule, coincides with several other solutions such as the nucleolus
(Schmeidler, 1969) or τ-value (Tijs, 1987) of the associated queueing game (van den
Nouweland et al., 1996).

Solutions for TU-games are usually supported by axiomatizations. In van den
Brink and Chun (2012), the minimal transfer rule is axiomatized by efficiency, Pareto
indifference, and balanced cost reduction. Whereas efficiency and Pareto indifference
are very common axioms, balanced cost reduction requires that the payoff of any
player is equal to the total externality she inflicts on the other players with her pres-
ence, i.e. a player’s payoff equals the sum of all changes in the payoffs of all other
players if that player leaves the queueing problem.

In this chapter, which is based on van den Brink et al. (2021), we study the im-
plications of extending this balanced cost reduction property to general TU-games.

1Other examples of 2-additive games are the broadcasting games of Bergantiños and Moreno-
Ternero (2020a), Bergantiños and Moreno-Ternero (2020b), and Bergantiños and Moreno-Ternero (2021)
or the telecommunication games of van den Nouweland et al. (1996).
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First, considering the class of 2-games, we show that the Shapley value (and thus pre-
nucleolus, τ-value) is the unique efficient solution that satisfies balanced externalities
being a direct translation of balanced cost reduction, requiring that the payoff of any
player is equal to the total externalities she inflicts on the other players. Second, we
extend this axiom to k-games being games where every worth is generated by coali-
tions of size k, and obtain a characterization of the Shapley value for k-games. Third,
it turns out that this axiom is incompatible with efficiency for general TU-games.

Keeping as close as possible to the idea of having an efficient solution which al-
locates the worth of the grand coalition in a way that balances a player’s payoff with
the externalities she inflicts on the other players, we weaken balanced externalities
by requiring that every player’s payoff is the same fraction of her total externality in-
flicted on the other players. This brings in one extra parameter (the fraction of total
externality that is attributed to the players), which makes this weak balanced exter-
nalities axiom compatible with efficiency. We show that the unique efficient solution
that satisfies this weak balanced externalities axiom is the proportional allocation of
nonseparable contribution (PANSC) value, which allocates the payoffs proportional to
the separable costs (Moulin, 1985) of the players. It is interesting to note that this value
is closely related to the Separable Costs Remaining Benefits (SCRB) method (Young et
al., 1982) and Alternative Cost Avoided (ACA) method (Straffin and Heaney, 1981;
Otten, 1993) in cost allocation problems. The SCRB method is commonly used in
practice, for example in allocating the costs of multi-purpose water development
projects (Straffin and Heaney, 1981; Young et al., 1982).

We also consider the dual value of the PANSC value, being the PD value studied
in Chapter 2, which allocates the worth of the grand coalition proportional to the
stand-alone worths of the players, and extend weak balanced externalities and the
axiomatization mentioned above using mollifier games (i.e. affine combinations of
a game and its dual game, see Charnes et al. (1978)). A comparison between the
PANSC value and PD value in terms of optimizing satisfaction criteria and associ-
ated consistency is given in Li et al. (2020). Finally, we discuss a reduced game con-
sistency property of the PANSC value, which, by duality, follows from the reduced
game consistency property of the PD value.

This chapter is organized as follows. After recalling definitions and notation in
Section 3.2, in Section 3.3 we extend the axiomatization of the Shapley value for
queueing problems and provide an axiomatization by efficiency and balanced ex-
ternalities for the classes of 2-games, and more general k-games. In Section 3.4, we
extend this axiomatization to general TU-games, and show incompatibility of effi-
ciency and balanced externalities. We weaken balanced externalities to get compat-
ibility, and use this weaker axiom to characterize the PANSC value. In Section 3.5,
we consider the dual value of the PANSC value, i.e. the PD value. In Section 3.6,
we provide other characterizations of the PANSC value. In Section 3.7, we introduce
cost allocation problems and compare the PANSC value with cost allocation meth-
ods from the literature. The proofs are provided in Section 3.8. Section 3.9 concludes.
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3.2 Definitions and notation

We recall some definitions from Chapter 1 that are used in this chapter. Recall that
GN denotes the class of all games with player set N, and G denotes the class of
all games. For every T ⊆ N, T 6= ∅, the unanimity game (N, uT) ∈ G is given
by uT(S) = 1 if T ⊆ S, and uT(S) = 0 otherwise. It is well-known that for ev-
ery game (N, v), there exists unique weights ∆v(T) ∈ R, ∅ 6= T ⊆ N, such that
v = ∑T⊆N ∆v(T)uT. The weights ∆v(T), ∅ 6= T ⊆ N, are the (Harsanyi) dividends
(Harsanyi, 1959) of the coalitions in game (N, v) and are given by ∆v(T) = v(T) if
|T| = 1, and ∆v(T) = v(T)−∑S⊂T,S 6=T ∆v(S) if |T| ≥ 2.

The Shapley value (Shapley, 1953a) is given by

Shi(N, v) = ∑
S⊆N
i∈S

∆v(S)
|S| for all i ∈ N.

The equal allocation of nonseparable cost (EANSC) value (Moulin, 1985) is given by

EANSCi(N, v) = SCi(N, v) +
1
|N|

(
v(N)− ∑

j∈N
SCj(N, v)

)
for all i ∈ N,

where SCi(N, v) = v(N) − v(N\{i}) is the separable cost of agent i ∈ N in game
(N, v).

3.3 Balanced externalities and 2-games

A game (N, v) is a 2-additive game, or shortly a 2-game, if v(S) = 0 for all S ⊆ N
with |S| ≤ 1, and v(S) = ∑ T⊆S

|T|=2
v(T) otherwise. Equivalently, a game (N, v) is a

2-game if and only if only coalitions of size two can have a nonzero dividend, i.e.
∆v(S) 6= 0 implies that |S| = 2. Therefore, in 2-games, all the worth is generated
by coalitions of size two. It is known that for nonnegative 2-games (i.e. 2-games in
which all worths are nonnegative), the Shapley value coincides with several other
values such as the nucleolus and the τ-value (van den Nouweland et al., 1996). For
2-games on N with |N| ≥ 2, this value is given by Shi(N, v) = 1

2 (v(N)− v(N\{i}))
for all i ∈ N.

A 2-game can be generalized to a k-additive game, or shortly a k-game. A game
(N, v) is a k-game, if v(S) = 0 for all S ⊆ N with |S| < k, and v(S) = ∑ T⊆S

|T|=k
v(T)

otherwise. Equivalently, a game (N, v) is a k-game if and only if only coalitions of
size k can have a nonzero dividend, i.e. ∆v(S) 6= 0 implies that |S| = k. It is known
that for k-games on N with |N| ≥ k, the Shapley value is given by Shi(N, v) =
1
k (v(N)− v(N\{i})) for all i ∈ N (van den Nouweland et al., 1996). Also for non-
negative k-games, the Shapley value coincides with the τ-value, but for k > 2, the
payoff vector assigned to a game by the nucleolus need not coincide with the payoff
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vector assigned by the Shapley value. In this paper, we do not restrict the sign of the
worths of coalitions in 2-games, as well as k-games.

As mentioned in the introduction, queueing games form a proper subset of the
class of 2-games. One of the most famous solutions for queueing problems is the
minimal transfer rule that is obtained as the Shapley value of an associated queue-
ing game (Maniquet, 2003). In van den Brink and Chun (2012), the minimal tranfer
rule is characterized as the unique solution for queueing problems that satisfies ef-
ficiency, Pareto indifference, and balanced cost reduction. The question that we ad-
dress in this chapter is which solutions for games satisfy, or are characterized by, (an
extension of) these axioms for general games. We first consider the class of 2-games.
Throughout the sequel, we denote by (N\{h}, v−h) the restricted game on N\{h},
given by v−h(S) = v(S) for all S ⊆ N\{h}.

A direct translation of balanced cost reduction for 2-games gives the following
property.

• Balanced externalities. For every 2-game (N, v) with |N| ≥ 2, and h ∈ N, it
holds that

ψh(N, v) = ∑
i∈N\{h}

(
ψi(N, v)− ψi(N\{h}, v−h)

)
.

Note that this axiom is well-defined since (N\{h}, v−h) is a 2-game if (N, v) is a
2-game. Together with efficiency, this axiom characterizes the Shapley value on the
class of 2-games.2

Theorem 3.1. For 2-games, the Shapley value is the unique value that satisfies efficiency
and balanced externalities.

All proofs of results in this chapter are given in Section 3.8.

As a corollary, we have that, on the class of 2-games, the pre-nucleolus and the
τ-value are also characterized by efficiency and balanced externalities.

We can generalize this result straightforwardly to the class of k-games by intro-
ducing a generalization of balanced externalities for k-games, k ≥ 2.

• k-balanced externalities. For every k-game (N, v) and h ∈ N, it holds that

ψh(N, v) =
1

k− 1 ∑
i∈N\{h}

(
ψi(N, v)− ψi(N\{h}, v−h)

)
.

Note again that this axiom is well-defined since (N\{h}, v−h) is a k-game if (N, v)
is a k-game. Together with efficiency and symmetry, this axiom characterizes the
Shapley value on the class of k-games.3

2We can even prove the uniqueness with the weaker axiom of 2-efficiency, requiring efficiency only
for games with at most two players.

3Similar as for 2-games, it is sufficient to require k-efficiency which requires efficiency only for
games with at most k players.
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• Symmetry. For all (N, v) ∈ C ⊆ G and i, j ∈ N such that v(S ∪ {i}) = v(S ∪
{j}) for all S ⊆ N\{i, j}, it holds that ψi(N, v) = ψj(N, v).

Theorem 3.2. For k-games, the Shapley value is the unique value that satisfies efficiency,
symmetry, and k-balanced externalities.

Although the proof is almost the same as that of Theorem 3.1, for completeness,
it is given in Section 3.8. Note that Theorem 3.1 is a special case of Theorem 3.2 by
taking k = 2. In this case, symmetry is superfluous. However, for k ≥ 3, symmetry
cannot be taken out since, k-balanced externalities has no bite if |N| < k in which
case the game is a null game where the worths of all coalitions equal zero.

3.4 Balanced externalities and the PANSC value for general
TU-games

Translating the idea of balanced externalities to general TU-games, we first consider
the axiom which requires that the payoff of any player is equal to the total externality
she inflicts on the other players with her presence. We call a class of games C ⊆ G
subgame closed if (N\{h}, v−h) ∈ C for all (N, v) ∈ C and h ∈ N.

• Balanced externalities. Let C ⊆ G be a subgame closed class of games. For all
(N, v) ∈ C with |N| ≥ 2, and h ∈ N, it holds that

ψh(N, v) = ∑
i∈N\{h}

(
ψi(N, v)− ψi(N\{h}, v−h)

)
.

We investigate the implications of this axiom in the context of games. As it turns
out, this axiom is incompatible with efficiency.

Proposition 3.1. There is no value on G that satisfies efficiency and balanced externalities.

Next, we explore whether we can characterize (subclasses of) the class of 2-games
as those classes of TU-games where the Shapley value is characterized by efficiency
and balanced externalities.

Proposition 3.2. Let C ⊆ G be a subgame closed class of games that contains at least
one game (N, v) with |N| ≥ 3. Then the Shapley value is the unique value that satisfies
efficiency and balanced externalities on C if and only if C is a subclass of the class of 2-games.

Note that for |N| = 2, every game with v({i}) = v({j}) = 0 is a 2-game.

Keeping as close as possible to the idea of having an efficient value which allo-
cates the payoffs of the players to somehow ‘balance’ the externalities inflicted on
the other players, we weaken balanced externalities by requiring that every player’s
payoff is the same fraction of her total externality inflicted on the other players.
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• Weak balanced externalities. Let C ⊆ G be a subgame closed class of games.
There exists α ∈ R such that for all (N, v) ∈ C with |N| ≥ 2 and all h ∈ N, if

∑i∈N\{h}
(
ψi(N, v)− ψi(N\{h}, v−h)

)
6= 0, then

ψh(N, v) = α ∑
i∈N\{h}

(
ψi(N, v)− ψi(N\{h}, v−h)

)
. (3.1)

Notice that we require the balanced externalities condition to hold only in the
case that ∑i∈N\{h}

(
ψi(N, v)− ψi(N\{h}, v−h)

)
6= 0 since otherwise the payoff of

h must be zero and is not dependent on α anymore. In the extreme case where
equality would hold for all players, then all payoffs would be zero, which would be
incompatible with efficiency if v(N) > 0.4

This weakening of balanced externalities brings in one extra parameter (the frac-
tion of total externality that is attributed to the players), which makes this weak
balanced externalities compatible with efficiency. It turns out that the unique ef-
ficient solution that satisfies this axiom is the proportional allocation of nonseparable
contribution (PANSC) value, which allocates the worth of the grand coalition propor-
tional to the separable costs of the players. This value coincides with the proportional
repartition of the non-marginal costs value (Lemaire, 1984) in cost allocation problems.

Let Gsc+ = {(N, v) ∈ G | SCi(N, v) > 0 for all i ∈ N} be the class of games with
player set N where all players have positive separable cost. Let G2

sc+ = {(N, v) ∈
Gsc+ | |N| = 2} and G≥2

sc+ = {(N, v) | (N, v) ∈ Gsc+, |N| ≥ 2}. We remark that the
class G≥2

sc+ contains the almost diminishing marginal contributions games (Leng et al.,
2021) with positive stand-alone worths.

Definition 3.1. The proportional allocation of nonseparable contribution (PANSC) value
on the class G≥2

sc+ assigns to every game (N, v) ∈ G≥2
sc+, the payoff vector

PANSCi(N, v) =
SCi(N, v)

∑j∈N SCj(N, v)
v(N) for all i ∈ N.

We restrict ourselves to the class G≥2
sc+ in order to avoid dividing by a zero de-

nominator.

Note that equivalently the PANSC value first assigns to every player its separable
cost and allocates the remainder (the total nonseparable cost) proportional to the
separable costs. Thus, the difference from the EANSC value (mentioned in Section
3.2) is that, after each player getting its separable cost, the PANSC allocates the total
nonseperable cost proportional to the separable costs, while that EANSC allocates it
equally over all players. We provide a further comparison between the PANSC and
EANSC value in Section 3.7.

Theorem 3.3. The PANSC value is the unique value on G≥2
sc+ that satisfies efficiency and

weak balanced externalities.
4This would occur if v(N) = v(N\{h}) > 0 for all h ∈ N.
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The PANSC value can be seen as a multiplicative normalization of the separable
costs to allocate v(N). In the literature, this proportional allocation of nonseparable
cost (or contribution) is less popular than the additive normalization of the nonsep-
arable cost (or contribution), as done by the more famous EANSC value. However,
as we will see in Section 3.7, for some cases the PANSC value coincides with well-
known and applied solutions in cost allocation. In this section, we promoted the
PANSC value by the weak balanced externalities axiom, which is inspired by a no-
tion of fairness in queueing problems.

3.5 The dual value: proportional division

Every value has its dual value which, instead of focusing on what coalitions can
earn, considers what happens if any coalition leaves assuming that the grand coali-
tion is already formed. In some cases, the dual value equals the value itself, in which
case we call this value self-dual. An example of a self-dual value is the Shapley value.

Formally, the dual of game (N, v) ∈ G is the game (N, v∗) ∈ G given by v∗(S) =
v(N)− v(N\S) for all S ⊆ N. The dual of value ψ is the value ψ∗ that assigns to every
game the payoff vector that ψ assigns to the dual game, i.e. ψ∗(N, v) = ψ(N, v∗) for
all (N, v) ∈ G. The dual of the PANSC value is the PD value, extensively discussed
in Chapter 2, which allocates v(N) proportional to the stand-alone worths of the
players. Recall from Chapter 2 that the PD value on the class of games with positive
stand-alone worths is given by

PDi(N, v) =
v({i})

∑j∈N v({j})v(N) for all (N, v) ∈ Gnz+ and i ∈ N,

where Gnz+ = {(N, v) ∈ G | v({i}) > 0 for all i ∈ N} is the class of games on N
where all stand-alone worths are positive.5

Proposition 3.3. For every game (N, v) ∈ Gnz+, it holds that PANSC(N, v∗) = PD(N, v).

Note that, under efficiency, (3.1) in the definition of weak balanced externalities
can be written as

ψh(N, v) = α

(
∑

i∈N\{h}
ψi(N, v)− v(N\{h})

)

for every h ∈ N with ∑i∈N\{h} ψi(N, v)− v(N\{h}) 6= 0. This shows that the payoff
assigned to player i is proportional to the externality she inflicts on all other players,
assuming that without player i, the coalition of remaining players earns its worth
v(N\{h}) in the original game. Instead of this worth, we can also consider other
possibilities to measure this externality.

5This value is also well-defined if all stand-alone worths are negative, as was allowed in Chapter 2.
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As an example, consider the class of mollifier games in Charnes et al. (1978), that
is based on affine combinations of a game and its dual. Formally, for β ∈ R, define
the mollifier game (N, v′β) as follows:

v′β(S) = βv(S) + (1− β)v∗(S) for all S ⊆ N. (3.2)

• Mollified weak balanced externalities. Let C ⊆ G be a subgame closed class
of games and let β ∈ R. There exists α ∈ R such that for all (N, v) ∈ C with
|N| ≥ 2 and all h ∈ N, if ∑i∈N\{h} ψi(N, v)− v′β(N\{h}) 6= 0, then

ψh(N, v) = α

(
∑

i∈N\{h}
ψi(N, v)− v′β(N\{h})

)
.

Although the worth v′β(N\{i}) need not be equal to v(N\{i}), i ∈ N, it turns out
that mollified weak balanced externalities is compatible with efficiency, and charac-
terizes the following value among the efficient values. Defining Gβ+ = {(N, v) ∈
G | ∑j∈N βv∗({j}) + (1− β)v({j})) > 0 for all i ∈ N}, the proof follows a similar
line as the proof of Theorem 3.3.

Theorem 3.4. Let β ∈ R. A value ψ on Gβ+ satisfies efficiency and mollified weak balanced
externalities if and only if ψ = ψβ with ψβ given by

ψ
β
i (N, v) =

βv∗({i}) + (1− β)v({i})
∑k∈N (βv∗({k}) + (1− β)v({k}))v(N) for all i ∈ N.

Note that ψ1 is the PANSC value, and 1-weak balanced externalities is very simi-
lar to weak balanced externalities (and, in fact, is equivalent to weak balanced exter-
nalities under efficiency). As another special case, ψ0 coincides with the PD value.

Other worths instead of v′β(N\{h}) could be used for coalition N\{h} in the
definition of mollified weak balanced externalities, but there are some restrictions.
For example, assuming that there is no impact from player h leaving, and thus the re-
maining players earn v(N) would give that ψh(N, v) = α

(
∑i∈N\{h} ψh(N, v)− v(N)

)
=

α(v(N)− ψh(N, v)− v(N)) = −αψh(N, v), which implies that α = −1. Obviously,
this is a restatement of efficiency.

3.6 Axiomatic characterizations of the PANSC value

In this section, considering a variable player set, we characterize the PANSC value
involving a reduced game consistency axiom. Then, we provide characterizations of
the PANSC value for two-player games.
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3.6.1 Consistency

By duality, the result in this subsection is very closely related to the reduced game
consistency result for the PD value in Section 2.3.3.

We consider the following reduced game. If a player j ∈ N leaves game (N, v)
with a certain payoff, then the complement reduced game (see Thomson (2011a)), also
known as dual projection consistency game in van den Brink et al. (2016), is a game
on the remaining player set that assigns to every subset of N\{j} its worth together
with player j in the original game minus the payoff that is assigned to player j. We
might consider that player j leaves the game with a fixed payoff, but commits to
cooperate with any coalition of remaining players. In return, player j is guaranteed
her payoff.

Definition 3.2. Given game (N, v) ∈ C, C ⊆ G, with |N| ≥ 2, player j ∈ N and
payoff vector x ∈ RN , the complement reduced game with respect to j and x is the
game (N\{j}, vx) given by

vx(S) =

{
v(S ∪ {j})− xj for any S ⊆ N\{j}, S 6= ∅;

0 if S = ∅.

Complement consistency requires that the payoffs assigned to the remaining
players in N\{j}, after player j leaving the game with her payoff according to value
ψ, is the same in the reduced game as in the original game.

Definition 3.3. A value ψ on C ⊆ G satisfies complement consistency if for every game
(N, v) ∈ C with |N| ≥ 3, j ∈ N, and x = ψ(N, v), it holds that (N\{j}, vx) ∈ C, and
ψi(N, v) = ψi(N\{j}, vx) for all i ∈ N\{j}.

The following result follows straightforwardly from Proposition 2.2 in Subsec-
tion 2.3.3. Since their domains are different, we provide the proof for ease of the
reader.

Proposition 3.4. The PANSC value on G≥2
sc+ satisfies complement consistency.

Complement consistency is the dual axiom of projection consistency (see Defini-
tion 2.3) that is used to axiomatize the PD value in Section 2.3.3. Axiomatizations
using reduced game consistency usually assume a specific allocation for two-player
games. For the PD value, this is proportional standardness which requires that for
two-player games (with positive stand-alone worths) the worth of the grand coali-
tion is allocated proportional to the stand-alone worths of the players. The PANSC
value obviously satisfies the dual of this standardness. Recall that G2

sc+ = {(N, v) ∈
Gsc+ | |N| = 2}.

• Dual proportional standardness. For all (N, v) ∈ G2
sc+, it holds that

ψi(N, v) =
v({i, j})− v({j})

(v({i, j})− v({i})) + (v({i, j})− v({j}))v({i, j}) for i ∈ N = {i, j}.
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Theorem 3.5. The PANSC value is the unique value on G≥2
sc+ that satisfies complement

consistency and dual proportional standardness.

Although the proof is almost the same as that of Theorem 2.6 in Subsection 2.3.3,
for completeness, it is given in Section 3.8.

3.6.2 Characterizations for two-player games

As mentioned in Subsection 2.3.4, standardness is a quite strong axiom since it co-
incides with the definition of some value for two-player games. Instead of dual
proportional standardness, we could also use the following axiom, which requires
that for two-player games where the worth of the grand coalition and the ratio of
the separable contributions of both players is equal, their payoffs are equal.

• Dual proportionality. For every two games (N, v), (N, v′) ∈ G2
sc+ such that (i)

v(N) = v′(N) and (ii) there is α > 0 such that SCi(N, v) = αSCi(N, v′) for all
i ∈ N, it holds that ψ(N, v) = ψ(N, v′).

Dual proportionality and complement consistency are not sufficient to charac-
terize the PANSC value on G≥2

sc+. Therefore, we additionally require the inessential
game property and continuity, but only for two-player games in G2

sc+. Mind that the
inessential game property in G2

nz is used in characterizing the PD value in Subsection
2.3.4.

• Inessential game property for two-player games. For every game (N, v) ∈
G2

sc+ with N = {i, j}, i 6= j, if v({i})+ v({j}) = v({i, j}), it holds that ψi(N, v) =
v({i}) and ψj(N, v) = v({j}).

• Continuity for two-player games. For all sequences of games {(N, wk)} and
game (N, v) in G2

sc+ such that lim
k→∞

(N, wk) = (N, v), it holds that lim
k→∞

ψ(N, wk) =

ψ(N, v).

The above three axioms characterize the PANSC value on G2
sc+.

Lemma 3.1. The PANSC value is the unique value on G2
sc+ that satisfies dual proportional-

ity, the inessential game property for two-player games, and continuity for two-player games.

Logical independence of the axioms used in Lemma 3.1 can be shown by the
following alternative solutions.

(i) The PD value satisfies all axioms except dual proportionality.

(ii) The value ψi(N, v) = SCi(N,v)v(N)
2 ∑j∈N SCj(N,v) +

v(N)
2|N| for all (N, v) ∈ G2

sc+ and i ∈ N,
satisfies all axioms except the inessential game property for two-player games.
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(iii) The value, for all (N, v) ∈ G2
sc+ and i ∈ N, given by

ψi(N, v) =

{
PANSCi(N, v) if v(N) 6= 0

ESDi(N, v) if v(N) = 0

satisfies all axioms except continuity for two-player games.

Theorem 3.5 and Lemma 3.1 together yield the following characterization of the
PANSC value on G≥2

sc+. The proof is omitted.

Corollary 3.1. The PANSC value is the unique value on G≥2
sc+ that satisfies dual pro-

portionality, the inessential game property for two-player games, continuity for two-
player games, and complement consistency.

Next, we provide alternative characterizations of the PANSC value on G2
sc+.

As a variation of dual proportionality, dual grand worth proportionality requires
that for two-player games where the separable contributions of each player are the
same, the ratio of the payoffs of both players equals the ratio of the worths of the
grand coalition of two games.

• Dual grand worth proportionality. For every two games (N, v), (N, v′) ∈ G2
sc+

such that (i) N = {i, j}, SCi(N, v) = SCi(N, v′), SCj(N, v) = SCj(N, v′), and
(ii) there is α ∈ R such that v(N) = αv′(N), it holds that ψ(N, v) = αψ(N, v′).

It turns out that the PANSC value on G≥2
sc+ is characterized by the inessential game

property for two-player games and dual grand worth proportionality. The proof is
obvious and is omitted.

Lemma 3.2. The PANSC value is the unique value on G2
sc+ that satisfies the inessential

game property for two-player games and dual grand worth proportionality.

The PD value satisfies neither complement consistency nor dual proportional
standardness but, being the dual value of the PANSC value, is characterized by the
dual axioms. Based on this duality, we provide two results that are closely related to
Proposition 2.3 and Theorem 2.7.

Denote G2
scQ = {(N, v) ∈ G2

sc+ | v(S) ∈ Q for all S ⊆ N}, so the worths of
coalitions in games in G2

scQ are rational numbers. The following axiom on G2
scQ is the

dual of grand worth additivity introduced in Subection 2.3.4.

• Relevant additivity: For two games (N, v), (N, v′) ∈ G2
scQ such that (i) N =

{i, j}, and (ii) there is a ∈ Q such that v′(S) = v(S) + a for all S ⊆ N with
S 6= ∅, it holds that

ψ(N, v) + ψ(N, v′) = ψ(N, v + Iv′) = ψ(N, v′ + Iv),

where the game (N, v + Iv′) is defined as: (v + Iv′)(S) = v(S) + v′(N) for all
S ⊆ N with S 6= ∅.
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Proposition 3.5. The PANSC value is the unique value on G2
scQ that satisfies the inessential

game property for two-player games and relevant additivity.

Similar to Theorem 2.7, continuity for two-player games together with the ax-
ioms in Proposition 3.5 characterize the PANSC value on G2

sc+. The proof is obvious
and is omitted.

Lemma 3.3. The PANSC value is the unique value on G2
sc+ that satisfies relevant additivity,

the inessential game property for two-player games, and continuity for two-player games.

3.7 Comparison with other values

In this section, we discuss the relationship between the PANSC value and two other
existing values, in particular the EANSC value that was mentioned in Section 3.2,
and the SCRB method which is popular for cost allocation problems.

3.7.1 Comparison with the EANSC value

The PANSC and EANSC values are both based on the separable costs of the players.
Whereas the EANSC value assigns to every player its separable cost and allocates
the remainder (the total nonseparable cost) equally over the players, the PANSC
value allocates the worth of the grand coalition proportional to the separable costs,
which is equivalent to first assigning to every player its separable cost and allocating
the remainder (the total nonseparable cost) proportional to the separable costs. The
next proposition gives two sufficient conditions for the EANSC and PANSC values
giving the same payoff vector.

Proposition 3.6. For every game (N, v) ∈ G≥2
sc+, EANSC(N, v) = PANSC(N, v) if and

only if v(N) = ∑k∈N SCk(N, v) or v(N\{i}) = v(N\{j}) for all i, j ∈ N.

The EANSC value satisfies the well-known standardness due to Hart and Mas-
Colell (1989).

• Standardness. For all (N, v) ∈ C, C ⊆ G, with |N| = 2, it holds that

ψi(N, v) = v({i}) + 1
2
[v({i, j})− v({i})− v({j})] for N = {i, j}.

The EANSC value also satisfies complement consistency. Similar to Theorem 3.5,
complement consistency and standardness together characterize the EANSC value
on G (also on G≥2

sc+). Moulin (1985) considers this fact in cost allocation problems, but
we give the exact proof for completeness, see Section 3.8.

Theorem 3.6. The EANSC value is the unique value on G that satisfies complement con-
sistency and standardness.
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Similar as the PANSC value (respectively, the EANSC value) is the multiplicative
(respectively, additive) normalization of the separable costs, the PD value (respec-
tively, the ESD value) is the multiplicitave (respectively, additive) normalization of
the stand-alone worths, as summarized in Table 3.1.

Multiplicative normalization Additive normalization
Separable cost SCi(N, v) PANSC EANSC
Stand-alone worth v({i}) PD ESD

TABLE 3.1: Individual assignments and normalization

In Section 3.4, we considered a ‘multiplicative normalization’ of balanced exter-
nalities, and saw that it characterizes the PANSC value as the unique efficient value
satisfying this axiom. An alternative could be to consider an ‘additive normaliza-
tion’. Combining the two variations gives the following axiom (and thus weaker
than both).

• α, γ-weak balanced externalities. Let C ⊆ G be a subgame closed class of
games. For all (N, v) ∈ C with |N| ≥ 2, there exist α, γ ∈ R such that, for
every h ∈ N,

ψh(N, v) = α ∑
i∈N\{h}

(
ψi(N, v)− ψi(N\{h}, v−h)

)
+ γ.

If ψ is efficient, then this axiom implies that

ψh(N, v) = α(v(N)− ψh(N, v)− v(N\{h})) + γ

and thus
ψh(N, v) =

αSCh(N, v) + γ

1 + α
.

Special cases of efficient values are:

(i) If α = 0, then we get the ED value, being EDh = v(N)
|N| for all h ∈ N.

(ii) If γ = 0, then we get the PANSC value.

(iii) If α = 1, then we get a modified EANSC value, being

MEANSh(N, v) =
1
2

SCh(N, v) +
1
|N|

(
v(N)− ∑

j∈N

SCj(N, v)
2

)
for all h ∈ N.

The MEANSC value coincides with the Shapley value for 2-games, and thus with
the minimal transfer rule for queueing games, as it should by the axioms. Notice that
the EANSC value does not coincide with the Shapley value for 2-games, and does
not belong to this class.
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3.7.2 Comparison with the SCRB method

In this subsection, we show that the PANSC value is closely related to the well-
known Separable Costs Remaining Benefits (SCRB) method in cost allocation problems.
Cost allocation problems have obtained much attention in the literature and have
been applied to address real problems. One of the most famous empirical examples
is the Tennessee Valley Authority (TVA) Act which is designed to assign the cost of
TVA projects specifically among the several purposes involved (Ransmeier, 1942).
The SCRB method is commonly used in practice for allocating the costs of multi-
purpose water development projects (Straffin and Heaney, 1981; Young et al., 1982).
It is based on a simple yet appealing idea that joint costs should be allocated in
proportion to the willingness to pay of the players. For a survey of such method, we
refer to Tijs and Driessen (1986).

A cost allocation problem is a triple (N, c, b), where N ⊂ N is a set of participants
or players, c : 2N → R is a cost function with c(∅) = 0, and b = (b(i))i∈N is a profile
where b(i) is the benefit to player i if her purposes are served. For any S ⊆ N, c(S)
is the cost of serving S which is the minimal cost of providing the service to the
players in S. The objective is to allocate the total cost c(N) among all players. A cost
allocation method or solution is a function which assigns an allocation vector x ∈ RN

to each cost allocation problem (N, c, b).

Notice that the pair (N, c) is mathematically equivalent to a game (N, v). Be-
cause of its different interpretation, the literature often speaks about a cost game,
respectively a profit game. Solutions can be defined for both types of games. In the
literature, one can find solutions that are applicable for cost as well as profit games.
Also the PANSC value is applicable in both contexts. In the case of cost games, we
speak about SCi(N, c) = c(N) − c(N\{i}) as the separable cost of player i in cost
game (N, c), and we refer to NSC(N, c) = c(N)−∑j∈N SCj(N, c) as the nonseperable
cost.6

Since player i would not be willing to pay more than min{b(i), c({i})} to par-
ticipate in the joint project, min{b(i), c({i})} − SCi(N, c) is considered as player i’s
remaining benefit. The SCRB method assigns to each player her separable cost, and
then allocates the nonseparable cost in proportion to the remaining benefits of play-
ers. Formally, the SCRB method is given by

SCRBi(N, c, b) = SCi(N, c) +
min{b(i), c({i})} − SCi(N, c)

∑j∈N(min{b(j), c({j})} − SCj(N, c))
· NSC(N, c).

A variant of the SCRB method, the Alternative Cost Avoided (ACA) method, is
studied by Straffin and Heaney (1981) and Otten (1993), and is given by

ACAi(N, c, b) = SCi(N, c) +
c({i})− SCi(N, c)

∑j∈N(c({j})− SCj(N, c))
· NSC(N, c).

6Since cost and profit games are mathematically equivalent, we denote the separable costs by
SCi(N, c), and SCi(N, v) respectively, depending on the context.
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It is clear that if b(j) ≥ c({j}) for all j ∈ N, then the SCRB method coincides with
the ACA method, i.e. SCRB(N, c, b) = ACA(N, c, b).

A cost allocation problem (N, c, b) can be transformed into a game (N, v) in two
ways. One is using an anti-game defined by v(S) = −c(S) for all S ⊆ N. This game
assigns to every coalition the total cost to provide the service for this coalition (in
nonnegative terms). The other is using a cost saving game (Young et al., 1982) defined
by v(S) = ∑k∈S c({k})− c(S) for all S ⊆ N. This game assigns to every coalition the
cost saving it can earn when cooperating and providing the service together for all
players in the coalition instead of every player providing the service for herself.

It turns out that in the special cases that the individual benefits are zero, or at
least equal to the individual costs, the SCRB method coincides with a variation of
the PANSC value to one of the associated games.

Proposition 3.7. Consider cost allocation problem (N, c, b).

(i) If b(j) = 0 for all j ∈ N, then SCRB(N, c, b) = −PANSC(N, v), where (N, v) is the
associated anti-game.

(ii) If b(j) ≥ c({j}) for all j ∈ N, then SCRBj(N, c, b) = c({j})− PANSCj(N, v) for all
j ∈ N, where (N, v) is the associated cost saving game.

3.8 Proofs

Proof of Theorem 3.1. It is well-known that the Shapley value is efficient. To show
that the Shapley value satisfies balanced externalities, let (N, v) be a 2-game such
that |N| ≥ 2, and h ∈ N. Then

∑
i∈N\{h}

(
Shi(N, v)− Shi(N\{h}, v−h)

)
= ∑

i∈N\{h}

 ∑
S⊆N,|S|=2

i∈S

∆v(S)
2
− ∑

S⊆N,|S|=2
i∈S,h 6∈S

∆v(S)
2


= ∑

i∈N\{h}
∑

S⊆N,|S|=2
i,h∈S

∆v(S)
2

= ∑
S⊆N,|S|=2

h∈S

∆v(S)
2

= Shh(N, v),

where the first equality follows since ∆v(S) = ∆v−h(S) for all S ⊆ N\{h}, and the
last equality follows since only coalitions of size 2 have a nonzero dividend. This
shows that the Shapley value satisfies balanced externalities.

We show the ‘only if’ part by induction on |N|. If |N| = 1, then ψi(N, v) =

v({i}) = 0 = Shi(N, v) by efficiency. If |N| = 2 such that N = {i, j}, then balanced
externalities implies that ψi(N, v) = ψj(N, v) − ψj({j}, v−i) = ψj(N, v). With effi-
ciency and the case |N| = 1 above, it then follows that ψi(N, v) = ψj(N, v) = v(N)

2 .
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We will establish the claim for an arbitrary number of players by an induction
argument. As induction hypothesis, suppose that uniqueness holds for all N′ ⊂ N

such that 2 ≤ |N′| ≤ |N| − 1. Consider 2-game (N, v). For any h ∈ N, balanced
externalities yields

ψh(N, v) = ∑
i∈N\{h}

(
ψi(N, v)− ψi(N\{h}, v−h)

)
. (3.3)

By the induction hypothesis, the ψi(N\{h}, v−h), i, h ∈ N, i 6= h, are uniquely
determined. Since |N| ≥ 3, (3.3) and efficiency yield a system of (|N| − 1) + 1 = |N|
linearly independent equations in the |N| unkowns ψh(N, v), h ∈ N, which thus are
uniquely determined.

Proof of Theorem 3.2. The proof is similar to that of Theorem 3.1, but we put it here
for completeness as follows.

It is well-known that the Shapley value satisfies efficiency and symmetry. To
show that the Shapley value satisfies k-balanced externalities, consider k-game (N, v)
and h ∈ N. Then

∑
i∈N\{h}

(
Shi(N, v)− Shi(N\{h}, v−h)

)
= ∑

i∈N\{h}

 ∑
S⊆N,|S|=k

i∈S

∆v(S)
k
− ∑

S⊆N,|S|=k
i∈S,h 6∈S

∆v(S)
k


= ∑

i∈N\{h}
∑

S⊆N,|S|=k
i,h∈S

∆v(S)
k

= (k− 1) ∑
S⊆N,|S|=k

h∈S

∆v(S)
k

= (k− 1)Shh(N, v),

where the first equality follows since ∆v(S) = ∆v−h(S) for all S ⊆ N\{h}, and the
third equality follows since every k-size coalition containing player h appears k− 1
times in the summation (once for every other player i ∈ N\{h}). This shows that
the Shapley value satisfies k-balanced externalities.

We show the ‘only if’ part by induction on |N|. Let (N, v) be a k-game such that
k ≥ 3 (the case k = 2 is already shown by Theorem 3.1). If |N| ≤ k, then all players
are symmetric in (N, v), and thus symmetry and efficiency imply that ψ and the
Shapley value coincide.

As induction hypothesis, suppose that uniqueness holds for all N′ ⊂ N such
that k ≤ |N′| ≤ |N| − 1. For any k-game (N, v) and h ∈ N, k-balanced externalities
yields

ψh(N, v) =
1

k− 1 ∑
i∈N\{h}

(
ψi(N, v)− ψi(N\{h}, v−h)

)
. (3.4)
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By the induction hypothesis, the ψi(N\{h}, v−h), i, h ∈ N, i 6= h, are uniquely
determined. Since |N| ≥ 3, (3.4) and efficiency yield a system of (|N| − 1) + 1 = |N|
linearly independent equations in the |N| unkowns ψh(N, v), h ∈ N, which thus are
uniquely determined.

Proof of Proposition 3.1. Consider a three-player game (N, v) ∈ G with N = {1, 2, 3}.
Let ψ be a value satisfying efficiency and balanced externalities. Then, we have the
following six equations from balanced externalities (the first equality in each line)
and efficiency (the second equality in each line):

−ψ1(N, v) + ψ2(N, v) + ψ3(N, v) = ψ2(N\{1}, v−1) + ψ3(N\{1}, v−1) = v({2, 3}),
ψ1(N, v)− ψ2(N, v) + ψ3(N, v) = ψ1(N\{2}, v−2) + ψ3(N\{2}, v−2) = v({1, 3}),
ψ1(N, v) + ψ2(N, v)− ψ3(N, v) = ψ1(N\{3}, v−3) + ψ2(N\{3}, v−3) = v({1, 2}).

Further, efficiency implies that

ψ1(N, v) + ψ2(N, v) + ψ3(N, v) = v({1, 2, 3}).

These four equations can be simplified to

ψ1(N, v) =
1
2
(v({1, 2}) + v({1, 3})),

ψ2(N, v) =
1
2
(v({1, 2}) + v({2, 3})),

ψ3(N, v) =
1
2
(v({1, 3}) + v({2, 3})), and

ψ3(N, v) =
1
2
(v({1, 2, 3})− v({1, 2})).

Looking at the last two equations, this system of equations clearly has only a solu-
tion if v({1, 3}) + v({2, 3}) = v({1, 2, 3})− v({1, 2}), or v({1, 2, 3}) = v({1, 2}) +
v({1, 3}) + v({2, 3}), which implies that (N, v) is a 2-game.

Proof of Proposition 3.2. Let C ⊆ G be a subgame closed class of games that con-
tains at least one game (N, v) with |N| ≥ 3. For the class of 2-games, the ‘if’ part
follows from Theorem 3.1. For any subgame closed subclass of the class of 2-games,
the proof goes in a similar way.

Next, we prove the ‘only if’ part by induction on |N|. Suppose that the Shapley
value is the unique solution that satisfies efficiency and balanced externalities on C.

Initialization. For |N| = 3, it follows from the proof of Proposition 3.1 that C
should be a subclass of 2-games.

Induction hypothesis. Suppose that the Shapley value being characterized by ef-
ficiency and balanced externalities on every class C ⊆ G with |N| ≤ d (d ≥ 3) for
every (N, v) ∈ C, implies that C is a class of 2-games.
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Induction step. Consider any game (N, v) such that |N| = d+ 1. We already know
that v(S) = v−h(S) = ∑ T⊆S

|T|=2
v(T) for all S ⊆ N\{h} and h ∈ N, since (N\{h}, v−h)

is a 2-game by the induction hypothesis. Let ψ be a solution satisfying efficiency and
balanced externalities. Then,

ψh(N, v) = ∑
i∈N\{h}

ψi(N, v)− ∑
i∈N\{h}

ψi(N\{h}, v−h)

= ∑
i∈N\{h}

ψi(N, v)− v−h(N\{h}),

where the first equality follows from balanced externalities and the second equality
follows from efficiency.

Summing this equality over all h ∈ N yields

∑
h∈N

ψh(N, v) = (|N| − 1) ∑
h∈N

ψh(N, v)− ∑
h∈N

v−h(N\{h}),

so (|N| − 2)∑h∈N ψh(N, v) = ∑h∈N v−h(N\{h}). Efficiency of ψ then implies that

(|N| − 2)v(N) = ∑
h∈N

v−h(N\{h}) = ∑
h∈N

∑
S⊆N\{h}
|S|=2

v(S) = (|N| − 2) ∑
S⊆N
|S|=2

v(S),

where the second equality follows from the induction hypothesis, and the third fol-
lows since in ∑S⊆N\{h},|S|=2 v(S), the two-player coalition worth v(S), S = {i, j}, ap-
pears once for each h ∈ N\{i, j}. Therefore, we obtain that v(N) = ∑S⊆N,|S|=2 v(S),
which implies that (N, v) must be a 2-game.

Proof of Theorem 3.3. It is obvious that the PANSC value is efficient. To show that
the PANSC value satisfies weak balanced externalities, take any h ∈ N. We consider
two cases.

Case (i). If ∑j∈N SCj(N, v) 6= v(N), taking α = v(N)
∑j∈N SCj(N,v)−v(N)

yields

α ∑
i∈N\{h}

(
PANSCi(N, v)− PANSCi(N\{h}, v−h)

)
= α (v(N)− PANSCh(N, v)− v(N\{h}))
= α (SCh(N, v)− PANSCh(N, v))

= α

(
SCh(N, v)− SCh(N, v)

∑j∈N SCj(N, v)
v(N)

)

= α · SCh(N, v) ·
(

1− v(N)

∑j∈N SCj(N, v)

)

= α · SCh(N, v) ·
(

∑j∈N SCj(N, v)− v(N)

∑j∈N SCj(N, v)

)
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=

(
v(N)

∑j∈N SCj(N, v)− v(N)

)
· SCh(N, v) ·

(
∑j∈N SCj(N, v)− v(N)

∑j∈N SCj(N, v)

)

=
SCh(N, v)

∑j∈N SCj(N, v)
· v(N)

= PANSCh(N, v),

where in the first equality we twice use that the PANSC value is efficient (once on
game (N, v) and once on game (N\{h}, v−h)). This shows that the PANSC value
satisfies weak balanced externalities if ∑j∈N SCj(N, v) 6= v(N).

Case (ii). If ∑j∈N SCj(N, v) = v(N), then PANSCi(N, v) = SCi(N, v) for all
i ∈ N, and thus we have by efficiency of the PANSC value that

∑
i∈N\{h}

(
PANSCi(N, v)− PANSCi(N\{h}, v−h)

)
= v(N)− PANSCh(N, v)− v(N\{h})
= SCh(N, v)− SCh(N, v)

= 0,

implying that weak balanced externalities does not have any bite.

To prove the ‘only if’ part, suppose that a value ψ satisfies efficiency and weak
balanced externalities on G≥2

sc+. Let (N, v) ∈ G≥2
sc+.

Case (i). If ∑i∈N\{h}(ψi(N, v)− ψi(N\{h}, v−h)) 6= 0, then efficiency and weak
balanced externalities together imply that there is α ∈ R such that for any h ∈ N,

ψh(N, v) = α ∑
i∈N\{h}

(ψi(N, v)− ψi(N\{h}, v−h))

= α (v(N)− ψh(N, v)− v(N\{h})) ,

and thus
(1 + α)ψh(N, v) = α (v(N)− v(N\{h})) ,

meaning
ψh(N, v) =

α

1 + α
(v(N)− v(N\{h})) .

Efficiency determines that

∑
h∈N

ψh(N, v) = ∑
h∈N

α

1 + α
(v(N)− v(N\{h})) = α

1 + α ∑
h∈N

SCh(N, v) = v(N),

implying that α = v(N)
∑h∈N SCh(N,v)−v(N)

, and thus

ψh(N, v) = PANSCh(N, v) for all h ∈ N.

Case (ii). If ∑i∈N\{h}(ψi(N, v)−ψi(N\{h}, v−h)) = 0, then by efficiency, we have
v(N) − ψh(N, v) − v(N\{h}) = 0, implying that ψh(N, v) = v(N) − v(N\{h}) =
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SCh(N, v) = PANSCh(N, v).

Proof of Proposition 3.3. For every (N, v) ∈ GN
nz+ and i ∈ N,

PANSCi(N, v∗) =
v∗(N)− v∗(N\{i})

∑j∈N(v∗(N)− v∗(N\{j}))v∗(N)

=
v(N)− (v(N)− v({i}))

∑j∈N(v(N)− (v(N)− v({j})))v(N)

=
v({i})

∑j∈N v({j})v(N)

= PDi(N, v).

Proof of Theorem 3.4. It is obvious that ψβ is efficient. To show that this solution
satisfies mollified weak balanced externalities, let (N, v), (N, v′β) ∈ Gβ+ and β ∈ R

be such that v′β(S) = βv(S) + (1− β)v∗(S) for all S ⊆ N. We consider two cases.

Case (i). If ∑j∈N(βv∗({j}) + (1− β)v({j})) 6= v(N), taking

α =
v(N)

∑j∈N(βv∗({j}) + (1− β)v({j}))− v(N)

for any h ∈ N, we have

α

(
∑

i∈N\{h}
ψ

β
i (N, v)− v′β(N\{h})

)
= α

(
v(N)− ψ

β
h (N, v)− βv(N\{h})− (1− β)v∗(N\{h})

)
= α

(
v(N)− ψ

β
h (N, v)− βv(N\{h})− (1− β)v(N) + (1− β)v({h})

)
= α

(
β(v(N)− v(N\{h})) + (1− β)v({h})− ψ

β
h (N, v)

)
= α

(
βv∗({h}) + (1− β)v({h})− ψ

β
h (N, v)

)
= α

(
βv∗({h}) + (1− β)v({h})− βv∗({h}) + (1− β)v({h})

∑j∈N(βv∗({j}) + (1− β)v({j}))v(N)

)
= α

(
βv∗({h}) + (1− β)v({h})

)(
1− v(N)

∑j∈N(βv∗({j}) + (1− β)v({j}))

)
= α

(
βv∗({h}) + (1− β)v({h})

)(
∑j∈N(βv∗({j}) + (1− β)v({j}))− v(N)

∑j∈N(βv∗({j}) + (1− β)v({j}))

)
=

βv∗({h}) + (1− β)v({h})
∑j∈N

(
βv∗({j}) + (1− β)v({j})

)v(N)

= ψ
β
h (N, v),

where the first equality holds from efficiency of ψβ, and the eighth equality follows
from substituting α.
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Case (ii). If ∑j∈N(βv∗({j})+ (1− β)v({j})) = v(N), then ψ
β
i (N, v) = βv∗({i})+

(1− β)v({i}), and thus ∑i∈N\{h} ψ
β
i (N, v) − v′β(N\{h}, v−h) = v(N) − ψ

β
h (N, v) −

(βv(N\{h})+ (1− β)v∗(N\{h})) = v(N)− (βv∗({h})+ (1− β)v({h}))− β(v(N)−
v∗({h}))− (1− β)(v(N)− v({h})) = 0, implying that mollified weak balanced ex-
ternalities does not have any bite. Altogether, ψβ satisfies mollified weak balanced
externalities.

To prove the ‘only if’ part, let ψ be a solution satisfying efficiency and mollified
weak balanced externalities on Gβ+. Let (N, v) ∈ Gβ+. We consider two cases.

Case (i). If ∑i∈N\{h} ψi(N, v) − v′β(N\{h}) 6= 0, then efficiency and mollified
weak balanced externalities imply that there is α ∈ R such that for h ∈ N,

ψh(N, v) = α

(
∑

i∈N\{h}
ψi(N, v)− v′β(N\{h})

)
= α

(
βv∗({h}) + (1− β)v({h})− ψh(N, v)

)
,

where the second equality holds from the first four equalities shown in the existence
part. Thus,

ψh(N, v) =
α

1 + α

(
βv∗({h}) + (1− β)v({h})

)
.

Efficiency determines that

∑
h∈N

ψh(N, v) =
α

1 + α ∑
h∈N

(βv∗({h}) + (1− β)v({h})) = v(N),

and thus
α

1 + α
=

v(N)

∑h∈N(βv∗({h}) + (1− β)v({h})) ,

which yields the desired formula.

Case (ii). If ∑i∈N\{h} ψi(N, v) − v′β(N\{h}) = 0, then by efficiency, v(N) −
ψh(N, v)− v′β(N\{h}) = 0, implying that ψh(N, v) = v(N)− v′β(N\{h}) = v(N)−(

βv(N\{h}) + (1− β)(v(N)− v({h}))
)
= β(v(N)− v(N\{h})) + (1− β)v({h}) =

βv∗({h}) + (1 − β)v({h}). By efficiency, ∑h∈N ψh(N, v) = ∑h∈N [βv∗({h}) + (1 −
β)v({h})] = v(N) > 0 since (N, v) ∈ Gβ+. Therefore,

ψi(N, v) = βv∗({i}) + (1− β)v({i})

=
βv∗({i}) + (1− β)v({i})

v(N)
v(N)

=
βv∗({i}) + (1− β)v({i})

∑k∈N (βv∗({k}) + (1− β)v({k}))v(N),

as desired.
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Proof of Proposition 3.4. Let (N, v) ∈ G≥2
sc+ and j ∈ N. First, we remark that the

class of games G≥2
sc+ is subgame closed under the complement reduced game opera-

tor, namely, if (N, v) ∈ G≥2
sc+ for |N| ≥ 3, then (N\{j}, vx) ∈ G≥2

sc+ for any j ∈ N and
x = PANSC(N, v), because SCi(N\{j}, vx) = vx(N\{j})− vx(N\{i, j}) = v(N)−
PANSCj(N, v)− (v(N\{i})− PANSCj(N, v)) = v(N)− v(N\{i}) = SCi(N, v) for
any i ∈ N\{j}.7 Next, we have, for any i ∈ N\{j},

PANSCi(N\{j}, vx) =
SCi(N\{j}, vx)

∑k∈N\{j} SCk(N\{j}, vx)
vx(N\{j})

=
SCi(N, v)

∑k∈N\{j} SCk(N, v)
(v(N)− xj)

=
SCi(N, v)

∑k∈N\{j} SCk(N, v)

(
v(N)−

SCj(N, v)
∑k∈N SCk(N, v)

v(N)

)
=

SCi(N, v)
∑k∈N\{j} SCk(N, v)

(
1−

SCj(N, v)
∑k∈N SCk(N, v)

)
v(N)

=
SCi(N, v)

∑k∈N\{j} SCk(N, v)
·

∑k∈N\{j} SCk(N, v)

∑k∈N SCk(N, v)
v(N)

=
SCi(N, v)

∑k∈N SCk(N, v)
v(N)

= PANSCi(N, v).

Proof of Theorem 3.5. It is straightforward that the PANSC value satisfies dual pro-
portional standardness. Complement consistency follows from Proposition 3.4.

To prove the ‘only if’ part, let ψ be a value on G≥2
sc+ which satisfies the two axioms.

Let (N, v) ∈ G≥2
sc+, x = PANSC(N, v), and y = ψ(N, v). We will show that x = y. If

|N| = 2, x = y follows from dual proportional standardness. Suppose, by induction,
that PANSCi(N′, v) = ψi(N′, v) holds for any game (N′, v) with |N′| < |N|.

Take any i ∈ N and j ∈ N\{i}, and consider (N, v) and the complement reduced
games (N\{j}, vx), (N\{j}, vy). We have

xi − yi = PANSCi(N, v)− ψi(N, v)

= PANSCi(N\{j}, vx)− ψi(N\{j}, vy)

= PANSCi(N\{j}, vx)− PANSCi(N\{j}, vy)

=
SCi(N\{j}, vx)

∑k∈N\{j} SCk(N\{j}, vx)
vx(N\{j})− SCi(N\{j}, vy)

∑k∈N\{j} SCk(N\{j}, vy)
vy(N\{j})

=
SCi(N, v)

∑k∈N\{j} SCk(N, v)
vx(N\{j})− SCi(N, v)

∑k∈N\{j} SCk(N, v)
vy(N\{j})

=
SCi(N, v)

∑k∈N\{j} SCk(N, v)
(v(N)− xj)−

SCi(N, v)
∑k∈N\{j} SCk(N, v)

(v(N)− yj)

7This equality is also used in the proof of Theorem 3.5. Notice that the class of games G≥2
sc+ is

subgame closed under this reduced game operator for any value ψ.
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=
SCi(N, v)

∑k∈N\{j} SCk(N, v)
(−xj + yj), (3.5)

where the second equality follows from the PANSC value and ψ satisfying comple-
ment consistency, the third equality follows from the induction hypothesis, and the
fifth equality follows similar as in the proof of Proposition 3.4, referring to Footnote
7.

Summing up (3.5) over all i ∈ N\{j} yields

∑
i∈N\{j}

(xi − yi) = ∑
i∈N\{j}

SCi(N, v)
∑k∈N\{j} SCk(N, v)

(−xj + yj) = −xj + yj,

and thus

∑
j∈N\{i}

(−xj + yj) = xi − yi. (3.6)

Summing up (3.5) over all j ∈ N\{i} yields

∑
j∈N\{i}

(xi − yi) = (|N| − 1)(xi − yi)

=
SCi(N, v)

∑k∈N\{j} SCk(N, v) ∑
j∈N\{i}

(−xj + yj). (3.7)

Together (3.6) and (3.7) imply that(
|N| − 1− SCi(N, v)

∑k∈N\{j} SCk(N, v)

)
(xi − yi) = 0.

Since SCk(N, v) > 0 for any k ∈ N and i ∈ N\{j}, we have

|N| − 1− SCi(N, v)
∑k∈N\{j} SCk(N, v)

6= 0 for any i ∈ N and j ∈ N\{i}.

Therefore, we have xi = yi.

Proof of Lemma 3.1. It is clear that the ‘if’ part is satisfied. To show the ‘only if’
part, suppose that ψ is a value satisfying dual proportionality, the inessential game
property for two-player games, and continuity for two-player games. Let (N, v) be
an arbitrary game in the class G2

sc+ with N = {i, j}.
If v(N) 6= 0, let (N, v′) be an additive game such that SCi(N, v′) = αSCi(N, v),

SCj(N, v′) = αSCj(N, v) and v′(N) = v(N). Clearly, α = v(N)
SCi(N,v)+SCj(N,v) 6= 0. Dual

proportionality and the inessential game property for two-player games imply that

ψk(N, v) = ψk(N, v′) = αSCk(N, v) =
SCk(N, v)

SCi(N, v) + SCj(N, v)
v(N) for all k ∈ {i, j}.
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If v(N) = 0, then continuity for two-player games implies that

ψ(N, v) = PANSC(N, v) = 0.

Proof of Proposition 3.5 . The ‘if’ part is straightforward. To prove the ‘only if’ part,
suppose that ψ is a value on G2

scQ that satisfies the two axioms. Let (N, v) ∈ G2
scQ

with N = {i, j}. For any α ∈ Q, consider the game (N, vα) defined by vα({i}) =

v({i}) + (α− 1)v(N), vα({j}) = v({j}) + (α− 1)v(N) and vα(N) = αv(N). Clearly,
(N, vα) ∈ G2

scQ.

On the one hand, we show that ψ(N, vα) = αψ(N, v) for all α ∈ Z. For games
(N, v) and (N, v0), using relevant additivity we obtain ψ(N, v)+ψ(N, v0) = ψ(N, v+
Iv0) = ψ(N, v), which implies ψ(N, v0) = 0. For any k ∈ Z+, since (N, vk) =

(N, vk−1 + Iv), relevant additivity implies ψ(N, vk) = ψ(N, vk−1) + ψ(N, v). This re-
cursion formula yields ψ(N, vk) = kψ(N, v). For any k ∈ Z−, since (N, vk + Iv) =

(N, vk+1), relevant additivity then implies ψ(N, vk) + ψ(N, v) = ψ(N, vk+1). This
recursion formula yields ψ(N, vk) = −|k|ψ(N, v) = kψ(N, v). Thus, we conclude
that ψ(N, vk) = kψ(N, v) for all k ∈ Z.

On the other hand, we have that ψ(N, v) = mψ(N, v
1
m ) for all m ∈ Z\{0}. In-

deed, for any m ∈ Z+, since (N, v
m−k

m ) = (N, v
m−k−1

m + I
v

1
m
) for all k ∈ {0, 1, . . . , m−

1}, using relevant additivity and then summing these equations yield ψ(N, v) =

mψ(N, v
1
m ). Similarly, for any m ∈ Z−, since (N, v

m+k
m + I

v
1
m
) = (N, v

m+k+1
m ) for all

k ∈ {0, 1, . . . , |m| − 1}, we have ψ(N, v) = −|m|ψ(N, v
1
m ) + ψ(N, v0) = mψ(N, v

1
m ).

Since any rational number α ∈ Q can be written as α = k
m , where k ∈ Z and

m ∈ Z\{0}. Therefore, ψ(N, vα) = ψ(N, v
k
m ) = kψ(N, v

1
m ) = k

m ψ(N, v) = αψ(N, v).

To show ψ = PANSC, we distinguish two cases: v(N) = 0 and v(N) 6= 0. For
every game (N, v) with v(N) = 0, ψ(N, v) = ψ(N, v0) = 0 = PANSC(N, v). For ev-
ery game (N, v) with v(N) 6= 0, take α = v(N)−v({i})+v(N)−v({j})

v(N)
, and then (N, vα) is

an additive game. The inessential game property for two-player games implies that
ψk(N, vα) = vα({k}) = v({k}) + (α − 1)v(N) for all k ∈ {i, j}. Hence, ψi(N, v) =
1
α ψi(N, vα) = v({i})−v(N)

α + v(N) = v(N)−v({j})
v(N)−v({i})+v(N)−v({j})v(N) = PANSCi(N, v) and

ψj(N, v) = v(N)−v({i})
v(N)−v({i})+v(N)−v({j})v(N) = PANSCj(N, v), as desired.

Proof of Proposition 3.6. For any (N, v) ∈ G≥2
sc+ and i ∈ N,

PANSCi(N, v) = SCi(N, v) +
SCi(N, v)

∑k∈N SCk(N, v)
[v(N)− ∑

k∈N
SCk(N, v)].
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Comparing this equation with (1.2), we have that EANSC(N, v) = PANSC(N, v)
if and only if

[v(N)− ∑
k∈N

SCk(N, v)][
SCi(N, v)

∑k∈N SCk(N, v)
− 1

n
] = 0 for all i ∈ N,

and thus v(N) = ∑k∈N SCk(N, v) or v(N\{i}) = v(N\{j}) for all i, j ∈ N.

Proof of Theorem 3.6. It is straightforward to show that the EANSC value satisfies
complement consistency and standardness. To show the ‘only if’ part, suppose that
ψ is a value satisfying complement consistency and standardness.

If |N| = 2, then ψ(N, v) = EANSC(N, v) follows from standardness.

Proceeding by induction, for |N| ≥ 3, suppose that ψ(N′, w) = EANSC(N′, w)

whenever |N′| = |N| − 1. Take any i, j ∈ N such that i 6= j. Let x = ψ(N, v) and
y = EANSC(N, v). For the two reduced games (N\{j}, vx) and (N\{j}, vy), by the
induction hypothesis, we have

xi − yi = ψi(N\{j}, vx)− EANSCi(N\{j}, vy)

= EANSCi(N\{j}, vx)− EANSCi(N\{j}, vy). (3.8)

By definition of the EANSC value and the complement reduced game, we have

EANSCi(N\{j}, vx)− EANSCi(N\{j}, vy)

= SCi(N\{j}, vx) +
1

|N| − 1
[vx(N\{j})− ∑

k∈N\{i}
SCk(N\{j}, vx)]

−SCi(N\{j}, vy)− 1
|N| − 1

[vy(N\{j})− ∑
k∈N\{i}

SCk(N\{j}, vy)]

= v(N)− v(N\{i}) + 1
|N| − 1

[v(N)− xj − ∑
k∈N\{i}

(v(N)− v(N\{k})]

−(v(N)− v(N\{i}))− 1
|N| − 1

[v(N)− yj − ∑
k∈N\{i}

(v(N)− v(N\{k})]

=
1

|N| − 1
(yj − xj).

Together with (3.8), this implies that, for all i, j ∈ N with i 6= j,

xi − yi =
1

|N| − 1
(yj − xj). (3.9)

Summing (3.9) over all i ∈ N\{j} yields ∑i∈N\{j}(xi − yi) = yj − xj, which im-
plies

∑
i∈N

(xi − yi) = 0. (3.10)
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On the other hand, (3.9) can be written as (|N| − 1)(xi − yi) = yj − xj. Summing
this equality over all j ∈ N\{i}, we have

(|N| − 1)2(xi − yi) = ∑
j∈N\{i}

(yj − xj). (3.11)

Together with (3.10) and (3.11), it holds that |N|(|N| − 2)(xi − yi) = 0. Thus, xi −
yi = 0 for all i ∈ N. This shows that ψ(N, v) = EANSC(N, v).

Proof of Proposition 3.7. Consider cost allocation problem (N, c, b).

(i) Suppose that b(j) = 0 for all j ∈ N. Then, the SCRB solution becomes, for all
i ∈ N,

SCRBi(N, c, b) = SCi(N, c) +
−SCi(N, c) · NSC(N, c)

∑j∈N(−SCj(N, c))

=
SCi(N, c)

∑j∈N SCj(N, c)
· c(N).

For the associated anti-game (N, v), since SCj(N, v) = −SCj(N, c) for all j ∈ N,
and c(N) = −v(N), we have

SCRBi(N, c, b) = − SCi(N, v)
∑j∈N SCj(N, v)

· v(N)

= −PANSCi(N, v),

and thus the cost allocation determined by the SCRB method coincides with (the
negative of) our PANSC value applied to the associated anti-game.

(ii) Suppose that b(j) ≥ c({j}) for all j ∈ N. In that case, for all i ∈ N,

SCRBi(N, c, b) = ACAi(N, c, b)

= SCi(N, c) +
(c({i})− SCi(N, c)) · NSC(N, c)

∑j∈N(c({j})− SCj(N, c))
.

For the associated cost saving game (N, v), since SCj(N, v) = v(N)− v(N\{j}) =

∑k∈N c({k})− c(N)−∑k∈N\{j} c({k})+ c(N\{j}) = c({j})− SCj(N, c) for all j ∈ N,
c(N) = ∑k∈N c({k})− v(N), and thus

NSC(N, c) = c(N)− ∑
k∈N

SCk(N, c)

= ∑
k∈N

c({k})− v(N)− ∑
k∈N

(c({k})− SCk(N, v))

= ∑
k∈N

SCk(N, v)− v(N)

= −NSC(N, v),
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we have

c({i})− SCRBi(N, c, b) = c({i})− SCi(N, c)− (c({i})− SCi(N, c)) · NSC(N, c)
∑j∈N(c({j})− SCj(N, c))

= SCi(N, v) +
SCi(N, v)

∑j∈N SCj(N, v)
NSC(N, v)

=
SCi(N, v)

∑j∈N SCj(N, v)
· v(N)

= PANSCi(N, v).

and thus the cost allocation determined by the SCRB method coincides with the
individual cost of each player minus the cost share allocated by our PANSC value
applied to the associated saving game.

3.9 Conclusion

One of the most popular values in queueing problems is the minimal transfer rule, which
is obtained by applying the Shapley value to an associated TU-game. Since queueing
games are so-called 2-games, this minimal transfer rule coincides also with other TU-
game values, such as the pre-nucleolus and the τ-value of the associated queueing
game. In van den Brink and Chun (2012), the minimal transfer rule is characterized
by efficiency, Pareto indifference and balanced cost reduction. The last axiom requires
that the payoff of any player is equal to the total externality she inflicts on the other
players with its presence, i.e. it equals the sum of all changes in the payoffs of all
other players if she leaves the queueing problem.

In this chapter, we have evaluated which value can be obtained if we extend the
balanced cost reduction property from queueing problems to TU-games. After ex-
tending the characterization result to the class of 2-games, we show that extending
this axiom in a straightfoward way to general TU-games, is incompatible with effi-
ciency. Keeping as close as possible to the idea behind balanced cost reduction, we
weaken the axiom by requiring that every player’s payoff is the same fraction of its
total externality inflicted on the other players. This weakening, which we call weak
balanced externalities, turns out to be compatible with efficiency. More specifically,
the unique efficient value that satisfies this weaker property is the PANSC value,
which allocates the payoffs proportional to the separable cost of the players. Since the
PANSC value is the dual of the PD value, characterizations of the PANSC value can
be derived from that of the PD value, see, for example, Section 3.6. We also have
characterized a class of values that has the PANSC value and the PD value as polar
cases, as in Theorem 3.4. This value allocates the worth of the grand coalition among
the players in proportion to their affine combination of the stand-alone worth and
the separable cost.

Many interesting topics are wide open for future studies. We only list a few in
the below. (i) Apply the PANSC and PD values to the almost diminishing marginal
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contributions games (Leng et al., 2021) with positive stand-alone worths. (ii) Study
characterizations of the convex combinations of the PANSC value and the PD value.
(iii) Study the PANSC and EANSC values of the broadcasting games (Bergantiños
and Moreno-Ternero, 2020a; Bergantiños and Moreno-Ternero, 2020b; Bergantiños
and Moreno-Ternero, 2021) based on the theory of 2-games (or queueing problems).

Another future research goes to cooperative strategic games in Kohlberg and
Neyman (2020), as an extension of two-person complete-information strategic games
introduced by Kalai and Kalai (2013). In Kohlberg and Neyman (2020), they present
two highly simplified game models of a public official who has the authority to make
decisions in matters of financial importance to private individuals or companies.
One of them, called “authority to issue licenses”, is described as follows. Each player
i ∈ N seeks approval for a project; another player A has the authority to approve up
to k projects (1 ≤ k ≤ |N|). Kohlberg and Neyman (2020) consider it as a strategic
game where player A can choose any subset of players of size at most k, while every
player i ∈ N has no strategic choices; the payoff of player A is zero, while the payoff
of player i ∈ N is αi or 0 (assume that α1 ≥ . . . ≥ αn ≥ 0), depending whether
her project is approved or not. The value for such games can be useful in designing
systems of incentives and penalties intended to deter bribery. As stated by Kohlberg
and Neyman (2020), cooperative strategic games are quite different from cooperative
games. Clearly, this game can also be modeled as an extension of 2-game, which
only coalitions of size two and more than k + 1 can have a nonzero dividend. Thus,
it might be possible to investigate this kind of cooperative strategic games based
on the EANSC value, the PANSC value and the Shapley value of the correspending
cooperative games.
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Chapter 4

Compromising between the
Proportional and Equal Division
Values

4.1 Introduction

The central question in TU-games is how to allocate the worth of the grand coalition
over the players. Undoubtedly, an extreme egalitarian value is the equal division
(ED) value (characterized in van den Brink (2007)), which allocates the total worth
equally among all players. In front of this equality principle, the proportional division
(PD) value relies on the proportionality principle: it gives payoffs in proportion to
players’ stand-alone worth, see Chapter 2.

Proportionality and equality are fundamental principles in various allocation
problems. Specifically, in bankruptcy problems where the available amount of a
resource that is to be allocated is not enough to honor all players’ claims on it, a pi-
oneering work was done by O’Neill (1982) which shows that the proportional and
equal rules are two prominent concepts both in practice and in theory. Subsequently,
some research has focused on comparing and characterizing different ways of com-
promising between the proportional and equal division rules for bankruptcy prob-
lems and other related problems. The reader is referred to Moulin (1987), Giménez-
Gómez and Peris (2014), and Thomson (2015b), and to Thomson (2003) and Thomson
(2015a) for overviews of this literature. As shown in O’Neill (1982), a bankruptcy
problem can be modeled as a TU-game. However, the sizable literature does not
touch the issue of generalizing values that compromise between proportionality and
equality principles for general TU-games.

In this chapter, which is based on Zou et al. (2020a), we introduce a family of
values for TU-games that offers a simple yet flexible compromise between propor-
tionality and equality principles. Our values, which we call α-mollified values, con-
tain convex combinations of the ED and PD values1 introduced in Moulin (1987) for

1The equal division value and the proportional division value are, respectively, called the equal
sharing rule and the proportional sharing rule in Moulin (1987).
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a special type of game. Specifically, the α-mollified value determines the payoff allo-
cation in two steps. First, linear functions are defined that associate a real number
(the initial share) to every TU-game. Second, the initial share is allocated over the
players in proportion to their stand-alone worth, and the residual of the worth of the
grand coalition is split equally over all players. This value reduces to the ED value
or the PD value when the initial share is zero or the worth of the grand coalition,
respectively. After introducing these values, we first provide an axiomatization of
the family of α-mollified values, as well as for affine combinations of the ED value
and the equal surplus division (ESD) value (also known as the CIS value in Driessen
and Funaki (1991)).

Our second result identifies which members of our family satisfy projection con-
sistency (see, e.g., Funaki and Yamato (2001), van den Brink and Funaki (2009), van
den Brink et al. (2016), Calleja and Llerena (2017), and Calleja and Llerena (2019)).
The consistency principle has been successfully applied to characterize a wide va-
riety of value concepts for TU-games. Given a payoff vector for some initial game,
and given a subgroup of players, a so-called reduced game among these players is
constructed where the worth of a coalition of remaining players depends on what
they can earn with leaving players, but also taking account of the payoffs assigned
to the leaving players. A value is consistent if it selects the same payoff allocation
for any reduced game. Different values satisfy different reduced game consistency
properties, where the difference is with respect to the way the reduced game is de-
fined. In the literature, various consistency properties are applied, using different
reduced games, which together with some properties characterize a unique point-
valued or set-valued solution. Some of the contributions on various solutions can
be found in Hart and Mas-Colell (1989), van den Brink and Funaki (2009), van den
Brink et al. (2016), Calleja and Llerena (2017), and Calleja and Llerena (2019), and the
surveys of Driessen and Funaki (1991) and Thomson (2011a).2

Instead of characterizing a unique value among all values, in this paper we use
consistency to identify a subclass of values from our class of α-mollified values.
More precisely, we focus on projection consistency exerting on a generalization of
the α-mollified values in which the initial share is measured as a general (possi-
bly asymmetric) linear function with respect to the worths of all coalitions. As it
turns out, projection consistency singles out either the PD value, or an egalitarian
value (being affine combination of the ED and ESD values). That is, through the
α-mollified values depend on all coalition worths, projection consistency just singles
out these special cases. This result provides an advantage of the proportional divi-
sion value and egalitarian values above other α-mollified (generalized) values. The
proofs of these results are technical, but follow a novel analytical approach.

2In contrast to the remarkable research on characterizing values, there are relatively few, yet sig-
nificant works on constructing consistent extensions of two-claimant rules, in the context of claims
problems. Such works mainly focus on identifying which members of the two-claimant family can be
generalized to general populations by requiring consistency; we refer to Thomson (2008), Thomson
(2013), and Thomson (2015b).
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Besides an axiomatic approach, we also provide a procedural implementation of
the α-mollified values by designing a dynamic allocation process based on a one-by-
one formation of the grand coalition, which is similar to that of the weighted ENSC
value in Hou et al. (2019).

This chapter is organized as follows. Section 4.2 recalls definitions and notation.
Section 4.3 introduces the concept of the α-mollified value. Section 4.4 identifies a
characterization. In Section 4.5, we focus on projection consistency exerting on our
family. Section 4.6 gives a procedural implementation. Section 4.7 shows the logical
independence of the axioms in a characterization result. The proofs are provided in
Section 4.8. Section 4.9 concludes.

4.2 Definitions and notation

We recall some definitions from Chapter 1 that are used in this chapter. Recall that
GN

nz denotes the class that consists of all individually positive and individually nega-
tive games on a specific player set N, i.e., GN

nz = {(N, v) ∈ GN | v({i}) > 0 for all i ∈
N, or v({i}) < 0 for all i ∈ N}. G≥2

nz denotes the class of games in GN
nz with at

least two players, i.e. G≥2
nz = {(N, v) ∈ G | |N| ≥ 2 and [v({i}) > 0 for all i ∈

N, or v({i}) < 0 for all i ∈ N]}. Besides, we introduce three additional notation.
Let GN

nz+ and GN
nz− denote the classes of individually positive and individually neg-

ative games on N, respectively. Let GN
D denote the class {(N, v) ∈ GN

nz | v({i}) 6=
v({j}) for some i, j ∈ N}.

The equal division (ED) value on C ⊆ G≥2
nz is defined for all (N, v) ∈ C and i ∈ N,

by

EDi(N, v) =
1
n

v(N).

The equal surplus division (ESD) value on C ⊆ G≥2
nz is defined for all (N, v) ∈ C and

i ∈ N, by

ESDi(N, v) = v({i}) + 1
n
[v(N)− ∑

j∈N
v({j})].

The proportional division (PD) value on C ⊆ G≥2
nz is defined for all (N, v) ∈ C and

i ∈ N, by

PDi(N, v) =
v({i})

∑k∈N v({k})v(N).

For any real number β ∈ [0, 1], the convex combination of the ED value and the
PD value with respect to β, introduced by Moulin (1987) for a special type of game,
is given for all (N, v) ∈ C and i ∈ N, by

ψ
β
i (N, v) = β PDi(N, v) + (1− β)EDi(N, v). (4.1)

The following properties of values, stated in Chapter 1 for arbitrary subclasses
of games, will be considered in this chapter.
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• Efficiency. For all (N, v) ∈ C ⊆ G≥2
nz , it holds that ∑i∈N ψi(N, v) = v(N).

• Linearity. For all (N, v), (N, w) ∈ C ⊆ G≥2
nz and a, b ∈ R such that (N, av +

bw) ∈ C, it holds that ψ(N, av + bw) = aψ(N, v) + bψ(N, w).

• Anonymity. For all (N, v) ∈ C ⊆ G≥2
nz , all permutation π : N → N and all

i ∈ N such that (N, πv) ∈ C, it holds that ψi(N, v) = ψπ(i)(N, πv).

• Continuity. For all sequences of games {(N, wk)} of elements of C ⊆ G≥2
nz and

every (N, v) ∈ C such that lim
k→∞

(N, wk) = (N, v), it holds that lim
k→∞

ψ(N, wk) =

ψ(N, v).

• Weak additivity. For all (N, v), (N, w) ∈ C ⊆ Gnz such that there exists c ∈ R

with w({i}) = cv({i}) for all i ∈ N, if (N, v + w) ∈ C then ψ(N, v + w) =

ψ(N, v) + ψ(N, w).

4.3 The family of α-mollified values

We generalize Formula (4.1) for TU-games by defining a new value, called α-mollified
value, that not only adopts the proportional and equal division principles, but also
takes into account the worths of all coalitions.

Definition 4.1. Let α : C → R be a linear and anonymous function on C ⊆ Gnz. That
is, for any (N, v) ∈ C, α(N, v) = ∑

S⊆N
α
|N|
|S| v(S), where every parameter α

|N|
|S| ∈ R. The

α-mollified value on C is defined for all (N, v) ∈ C and i ∈ N, by

ψα
i (N, v) =

v({i})
∑k∈N v({k})α(N, v) +

1
n
(
v(N)− α(N, v)

)
. (4.2)

Dutta and Ray (1989) argue that all coalitions should be considered when for-
mulating an (egalitarian) allocation in a TU-game. This is clearly not the case when
one considers the equal or proportional division value, or any convex combination
of them. However, since the linear function α used to define an α-mollified value de-
pends on all coalition worths, the payoff allocation according to an α-mollified value
might depend on all coalition worths. The idea of assigning numbers to TU-games,
as done by the linear function α is similar to Hart and Mas-Colell (1989) who asso-
ciate a real number with a TU-game, called potential, that is the expected normalized
worth, being a linear function with respect to the worths of all coalitions. Casajus
and Huettner (2014a) shows that the potential is the expected worth generated by
some natural random partition of the player set.

An alternative formula for the α-mollified value is given by

ψα
i (N, v) =

v(N)

n
+

v({i})− 1
n ∑k∈N v({k})

1
n ∑k∈N v({k})

α(N, v)
n

.
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Then this value can be interpreted as assigning to every player an equal share in
the worth of the grand coalition, corrected by a (positive or negative) amount that is
based on the deviation of the stand-alone worth and the average stand-alone worth,
and the number α(N, v).

Remark 4.1. Various functions α(N, v) give rise to various values. Some examples
are the following:

(i) The ED value is obtained when α(N, v) = 0.

(ii) The ESD value is obtained when α(N, v) = ∑k∈N v({k}).

(iii) The family of affine combinations of the ESD value and ED value, i.e. ψ =

βESD + (1− β)ED, is obtained when α(N, v) = β ∑k∈N v({k}), β ∈ R.

(iv) The family of affine combinations of the PD value and ED value, i.e. ψ =

βPD + (1− β)ED, is obtained when α(N, v) = βv(N), β ∈ R.

(v) The family of affine combinations of the PD value and ESD value, i.e. ψ =

βPD + (1− β)ESD, is obtained when α(N, v) = βv(N) + (1− β)∑k∈N v({k}),
β ∈ R.

(vi) The family of proportional surplus division values Zou et al. (2020b) given by

ψα
i (N, v) =

β

n ∑
k∈N

v({k}) + v({i})
∑k∈N v({k}) [v(N)− β ∑

k∈N
v({k})]

is obtained when α(N, v) = v(N)− β ∑k∈N v({k}), β ∈ R.

If β = 0, this is the PD value, recently characterized by Zou et al. (2021); if
β = 1, this is the egalitarian proportional surplus division value characterized
by Zou et al. (2020b). Zou et al. (2020b) also characterize the families of values
when β ∈ R and β ∈ [0, 1].

(vii) When α(N, v) = v(N)− 1
2n−1 ∑S⊆N v(S), we have a new value given by

ψα
i (N, v) =

1
n(2n − 1) ∑

S⊆N
v(S) +

v({i})
∑k∈N v({k}) [v(N)− 1

2n − 1 ∑
S⊆N

v(S)],

which allocates the average coalition worth among all players equally and then
allocates the remainder of the worth of the grand coalition in proportion to
players’ stand-alone worth.

4.4 Axiomatization of the family of α-mollified values

There are several approaches to justify values for TU-games. Two of these approaches
are axiomatization and providing a dynamic process. In this section, we provide an
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axiomatization for the family of α-mollified values, as well as for affine combinations
of the ESD and ED values.

In order to characterize the family of α-mollified values, we consider the fol-
lowing axioms. First, the balanced individual excess ratio property states that the
ratio of the difference of the payoffs of any two players over the difference of their
stand-alone worths is equal for any pair of players. To avoid dividing by zero, we
formulate this axiom as follows.

• Balanced individual excess ratio property. For any (N, v) ∈ Gnz with |N| ≥ 3
and any i, j, k ∈ N, it holds that

(ψi(N, v)−ψj(N, v))(v({i})− v({k})) = (ψi(N, v)−ψk(N, v))(v({i})− v({j})).
(4.3)

For any game (N, v) ∈ GN
D , and players i, j, h ∈ N with v({i}) 6= v({j}) and

v({i}) 6= v({k}), (4.3) can be written as

ψi(N, v)− ψj(N, v)
v({i})− v({j}) =

ψi(N, v)− ψk(N, v)
v({i})− v({k}) ,

where the denominators are nonzero for all (N, v) ∈ GN
D .

Under efficiency and continuity, the balanced individual excess ratio property
characterizes the following family of values.

Proposition 4.1. Let |N| ≥ 3. A value ψ on GN
nz satisfies efficiency, the balanced individual

excess ratio property, and continuity if and only if there exists a continuous function g :
GN

nz → R such that

ψi(N, v) =
v(N)

n
+ g(N, v)[v({i})− 1

n ∑
k∈N

v({k})] (4.4)

for all (N, v) ∈ GN
nz and i ∈ N.

The proof of Proposition 4.1 and of all other results can be found in Section 4.8.

Remark 4.2. Proposition 4.1 still holds if the domain GN
nz is replaced by GN

nz+ or GN
nz−,

which can be obtained from the proof of this proposition.

Among the values characterized in Proposition 4.1, only affine combinations of
the ESD value and the ED value satisfy the linearity axiom. As shown below, conti-
nuity is superfluous in this characterization result.

Theorem 4.1. Let |N| ≥ 3. A value ψ on GN
nz satisfies efficiency, the balanced individual

excess ratio property, and linearity if and only if there is β ∈ R such that

ψi(N, v) = βv({i}) + 1
n
[v(N)− ∑

k∈N
βv({k})] (4.5)

for all (N, v) ∈ GN
nz and i ∈ N.
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To characterize the family of α-mollified values on GN
nz+ or GN

nz−, we add the
following axiom.

• No advantageous reallocation across individuals. For all (N, v), (N, w) ∈ GN
nz

and T ⊆ N such that v(S) = w(S) for all S ⊆ N with |S| ≥ 2, v({i}) = w({i})
for all i ∈ N\T and ∑i∈T v({i}) = ∑i∈T w({i}), it holds that ∑i∈T ψi(N, v) =

∑i∈T ψi(N, w).

No advantageous reallocation across individuals (Moulin, 1987) states that no
group of players benefits if reallocating their stand-alone worths among themselves
is allowed. All efficient linear and symmetric values satisfy this axiom. Making
use of a similar axiom, Ertemel and Kumar (2018) characterize an extension of the
proportional rule for rationing problems, which is similar to our α-mollified value
in that context.

This axiom characterizes the family of α-mollified values together with weak
additivity, anonymity, and the axioms in Proposition 4.1.

Theorem 4.2. Let |N| ≥ 3. A value ψ on GN
nz+ (respectively GN

nz−) satisfies efficiency,
the balanced individual excess ratio property, continuity, weak additivity, anonymity, and
no advantageous reallocation across individuals if and only if ψ belongs to the family of
α-mollified values.

Remark 4.3. If weak additivity is replaced by weak linearity, then the coefficient α
|N|
|S|

for each S ⊆ N in (4.2) must be the same on GN
nz+ and GN

nz−, and thus in this case the
domain in Theorem 4.2 can be extended to the class GN

nz. Together with Theorem 4.1,
we conclude that the affine combinations of the ESD value and the ED value are the
only linear values in the family of α-mollified values on GN

nz.

4.5 Consistency

It is shown that the affine combinations of the ED and ESD values can be character-
ized using projection consistency by van den Brink et al. (2016). Zou et al. (2021) use
projection consistency to characterize the PD value (also see Chapter 2). Several val-
ues satisfy projection consistency, see, e.g., Otten (1993), Funaki and Yamato (2001),
Calleja and Llerena (2017), and Calleja and Llerena (2019). However, we show that
the only α-mollified values that satisfy projection consistency are the PD value and
affine combinations of the ED and ESD values.

We refer the definitions of the projection reduced game and projection consis-
tency to Definition 2.2 and Definition 2.3.

Consistency is usually applied together with some properties to characterize a
unique value on a class of games. Instead, the following theorem uses the consis-
tency principle to select specific values from the family of α-mollified values (and
thus implicitly assumes properties that characterize this family in Theorem 4.2).
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Theorem 4.3. Let ψα on Gnz be an α-mollified value. Then ψα satisfies projection consis-
tency if and only if ψα = PD or ψα = βESD + (1− β)ED, where β ∈ R.

Although we can give a direct proof of this theorem, it follows as a corollary from
the following theorem using a class of values containing the α-mollified values. The
difference is that in defining the linear functions α(N, v), we allow that coalitions of
the same size are assigned a different weight by the function α(N, v).

Definition 4.2. Let α : C → R be a linear function on C ⊆ Gnz. That is, for any
(N, v) ∈ C, α(N, v) = ∑

S⊆N
αN

S v(S), where every parameter αN
S ∈ R. The α-mollified

generalized value on C is defined for all (N, v) ∈ C and i ∈ N, by

ψα
i (N, v) =

v({i})
∑k∈N v({k})α(N, v) +

1
n
(
v(N)− α(N, v)

)
. (4.6)

Notice that Expression (4.6) is the same as Expression (4.2), but we apply a more
general function α(N, v). It turns out that Theorem 4.3 holds on the larger class of
α-mollified generalized values.

Theorem 4.4. Let ψα on Gnz be an α-mollified generalized value. Then ψα satisfies projec-
tion consistency if and only if ψα = PD or ψα = βESD + (1− β)ED, where β ∈ R.

As mentioned before, the family of α-mollified values is a subfamily of α-mollified
generalized values. Since the resulting values in Theorem 4.4 are also members in
the family of α-mollified values, we obtain Theorem 4.3 as a corollary of Theorem 4.4.

Remark 4.4. The Core, one of the most significant set-valued solutions, has been ax-
iomatised in terms of consistency in, e.g., Funaki and Yamato (2001) and Abe (2018).
The Core is a convex set of payoff vectors for every game (if core is nonempty),
whereas for a game (N, v) ∈ Gnz, the resulting subfamily in Theorem 4.4 in general
is not a convex set. As an implication of Theorem 4.4, the combinations of the PD
value and any value belonging to {γESD + (1− γ)ED | γ ∈ R}, such as the value
given by (4.1) with β ∈ (0, 1), cannot be characterized using projection consistency.

Combining Theorem 4.2 and Theorem 4.3, we can obtain a result that a value ψ

on GN
nz+ satisfies efficiency, the balanced individual excess ratio property, continuity,

weak additivity, anonymity, no advantageous reallocation across individuals, and
projection consistency if and only if ψ is the PD value or given by βESD+(1− β)ED,
where β ∈ R. It is worth to mention that, with the class of α-mollified (generalized)
values, these two very different types of values are obtained by projection consis-
tency.

Moulin gives an interesting result (Theorem 2, Moulin (1987)) which character-
izes the equal sharing and proportional sharing rules by separability, no advanta-
geous reallocation, path independence and additivity in surplus sharing problems.
Though our TU-game setting is different from surplus sharing problem, the projec-
tion consistency seems to have an important role to pick up the values similar to
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the two types of sharing rules in Moulin (1987). In this sense, our theorem can be
considered as a counter part of Moulin’s result.

4.6 Procedural implementation

As mentioned in Section 4.4, a dynamic process of allocating the attainable worth is
another approach to justify values for TU-games; we refer to Ju et al. (2007b), Hwang
et al. (2005), Malawski (2013), Wang et al. (2019), and Hou et al. (2019). Under the
assumption that all players form the grand coalition, as is usual in the theory of
TU-games, the players then totally allocate the worth of the grand coalition among
themselves. Given a formation order, a player claims her share in the worth of the
grand coalition when she joins the game, and what’s left is allocated among the
players who have arrived before him. Motivated by this procedure, we give a pro-
cedural implementation of the α-mollified values based on a one-by-one formation
of the grand coalition.

Formally, a unique payoff vector is determined by the following steps:

Step 1: Choose any game (N, v) ∈ GN
nz and any permutation π ∈ Π(N) to gradually

form the grand coalition N.

Step 2: Each entering player i ∈ N such that π(i) = 1 receives his individual worth
v({i}).

Step 3: Each entering player i ∈ N such that π(i) 6= 1 obtains the fraction v({i})
∑k∈N v({k})

from the preservated worth α(N, v).

Step 4: The residual v(Si
π)− v(Si

π\{i})−
v({i})

∑k∈N v({k})α(N, v) after player i joining the
nonempty coalition Si

π \ {i}, Si
π = {j ∈ N | π(j) ≤ π(i)}, is allocated

equally among the members of the coalition that was present before i en-
tered.

Steps 1–4 determine a payoff vector (ηπ,α)i∈N ∈ RN defined as:

ηπ,α
i =



v({i}) + ∑
j∈N:

π(j)>π(i)

v(Sj
π)−v(Sj

π\{j})− v({j})α(N,v)
∑k∈N v({k})

π(j)−1 , if π(i) = 1,

v({i})α(N,v)
∑k∈N v({k}) + ∑

j∈N:
π(j)>π(i)

v(Sj
π)−v(Sj

π\{j})− v({j})α(N,v)
∑k∈N v({k})

π(j)−1 , if π(i) 6= 1, n,

v({i})α(N,v)
∑k∈N v({k}) , if π(i) = n.

(4.7)

The next theorem shows that averaging the outcome of this procedure over all
permutations yields the corresponding α-mollified value. In fact, by the same proof
it can be shown that this holds for any α-mollified generalized value.
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Theorem 4.5. For any (N, v) ∈ GN
nz and any linear function α(N, v) = ∑

S⊆N
α
|N|
|S| v(S),

ψα
i (N, v) =

1
n! ∑

π∈Π(N)

ηπ,α
i for all i ∈ N,

where ηπ,α
i is given by (4.7).

Again, the proof can be found in Section 4.8.

Remark 4.5. Theorem 4.5 is still valid for games in which the sum of all stand-alone
worths is nonzero. For the procedural implementation, the number v({i})

∑k∈N v({k}) for
each i ∈ N can be considered as an endogenous weight of player i. If this endoge-
nous weight vector is replaced by an exogenous weight vector (wi)i∈N , i.e. wi ≥ 0
for all i ∈ N and ∑k∈N wk = 1, then the expected payoff is given by

ψw
i (N, v) = wiα(N, v) +

1
n
(
v(N)− α(N, v)

)
for all i ∈ N.

4.7 Independence of axioms

Logical independence of the axioms in Theorem 4.2 can be shown by the following
alternative values on GN

nz+ (or GN
nz−):

(i) The value defined by ψi(N, v) = 0 for all i ∈ N satisfies all axioms except
efficiency.

(ii) The value defined by

ψi(N, v) =
v(N)

n
+ ∑

S⊆N:i∈S,|S|≥2
v(S)− 1

n ∑
S⊆N:|S|≥2

|S|v(S) for all i ∈ N,

satisfies all axioms except the balanced individual excess ratio property.

(iii) Let f̂ : R2n−n−1 → R be a discontinuous additive function3 with respect to all
v(S), S ⊆ N, |S| ≥ 2. The value defined by

ψi(N, v) =
v(N)

n
+ f̂ (N, v)

(
v({i})

∑k∈N v({k}) −
1
n

)
for all i ∈ N,

satisfies all axioms except continuity.

(iv) The value defined by

ψi(N, v) =
v(N)

n
+

v({i})
∑k∈N v({k}) −

1
n

for all i ∈ N,

3The existence of discontinuous additive functions was an open problem for many years. Mathe-
maticians could neither prove that every additive function is continuous nor exhibit an example of a
discontinuous additive function. It was Hamel (1905) who first succeeded in proving that there exist
discontinuous additive functions. No concrete example is known, but we only know that it exists; we
refer to (pp.129-130, Kuczma (2009)) and (pp.9-13, Sahoo and Kannappan (2011)).
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satisfies all axioms except weak additivity.

(v) Let {αN
S | S ⊆ N, |S| ≥ 2} be a collection of real numbers such that αN

T 6= αN
K

for some T, K ⊆ N with |T| = |K|. The value defined by

ψi(N, v) =
v(N)

n
+ ∑

S⊆N:|S|≥2
αN

S v(S)
(

v({i})
∑k∈N v({k}) −

1
n

)
for all i ∈ N,

satisfies all axioms except anonymity.

(vi) The value defined by

ψi(N, v) =
v(N)

n
+

∑k∈N(v({k}))2

∑k∈N v({k})

(
v({i})

∑k∈N v({k}) −
1
n

)
for all i ∈ N,

satisfies all axioms except no advantageous reallocation across individuals.

4.8 Proofs

Let us denote K(v) = ∑i∈N v({i}) for any game (N, v). If no ambiguity is possible,
we use K instead of K(v).

Proof of Proposition 4.1. It is clear that the ‘if’ part is satisfied. To show the ‘only if’
part, suppose that ψ is a value satisfying efficiency, the balanced individual excess
ratio property, and continuity. We distinguish the games of GN

nz into two cases.

Case (i): (N, v) ∈ GN
D . Notice that there being some pair of players i, j ∈ N with

v({i}) 6= v({j}), implies that for any i ∈ N, there must be some player j ∈ N such
that v({i}) 6= v({j}). The balanced individual excess ratio property implies that
for all k ∈ N\{i},

(ψi(N, v)− ψj(N, v))(v({i})− v({k})) = (ψi(N, v)− ψk(N, v))(v({i})− v({j})).

Denoting gi(N, v) = ψi(N,v)−ψj(N,v)
v({i})−v({j}) , the above equation can be written as

ψi(N, v)− ψk(N, v) = gi(N, v)[v({i})− v({k})].

Summing this equality over all k ∈ N\{i}, yields

(n− 1)ψi(N, v)− ∑
k∈N\{i}

ψk(N, v) = gi(N, v)[(n− 1)v({i})− ∑
k∈N\{i}

v({k})],

which can be rewritten as

nψi(N, v)− ∑
k∈N

ψk(N, v) = gi(N, v)[nv({i})− ∑
k∈N

v({k})].
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With efficiency, ∑k∈N ψk(N, v) = v(N), and thus this implies

ψi(N, v) =
v(N)

n
+ gi(N, v)[v({i})− 1

n ∑
k∈N

v({k})]. (4.8)

Notice that, for every player i in a game (N, v), the number gi(N, v) is determined
for a specific j, but this j can be different for different games (as long as it is a
player with a different stand-alone worth as i.) Next, we show that gi(N, v) =

gh(N, v) for all i, h ∈ N. Let i, h ∈ N be two players such that v({i}) 6= v({h}).
Clearly, gi(N, v) = gh(N, v) = ψi(N,v)−ψh(N,v)

v({i})−v({h}) . For any k ∈ N\{i, h}, it must be
that v({k}) 6= v({i}) or v({k}) 6= v({h}) (or both). Without loss of generality,
we assume that v({k}) 6= v({i}). By the balanced individual excess ratio property
applied to i, h, k ∈ N, we have ψi(N,v)−ψh(N,v)

v({i})−v({h}) = ψi(N,v)−ψk(N,v)
v({i})−v({k}) , implying gi(N, v) =

gk(N, v).

Setting g(N, v) = gi(N, v) and then substituting it into (4.8), we obtain (4.4). More-
over, continuity implies that g(N, v) is continuous.

Case (ii): (N, v) ∈ GN
nz \ GN

D . In this case, v({i}) = v({j}) for all i, j ∈ N. Let
{(N, wm)} be a sequence of games from GN

D such that lim
m→∞

(N, wm) = (N, v). By
continuity and Case (i),

ψi(N, v) = lim
m→∞

ψi(N, wm)

= lim
m→∞

[v(N)

n
+ g(N, wm)[wm({i})−

1
n ∑

k∈N
wm({k})]

]
=

v(N)

n
+ lim

m→∞
g(N, wm)[wm({i})−

1
n ∑

k∈N
wm({k})]

=
v(N)

n
,

where the last equality follows from the fact that g(N, wm) is a continuous function
and, by lim

m→∞
(N, wm) = (N, v) with (N, v) 6∈ GN

D , lim
m→∞

[wm({i})− 1
n ∑k∈N wm({k})] =

0. Clearly, this coincides with (4.4), for any function g(N, v). Taking g(N, v) =

lim
m→∞

g(N, wm) yields the desired assertion.

Proof of Theorem 4.1. It is clear that any value of the form given in (4.5) satisfies the
three axioms. To prove the ‘only if ’ part, suppose that ψ is a value on GN

nz satisfying
the three axioms. The proof is divided into three steps. Step 1 and Step 2 together
show that (4.5) holds on the class GN

D , and Step 3 shows that (4.5) also holds on the
class GN

nz\GN
D .

Step 1. For any (N, v) ∈ GN
D , there exists two games (N, v1), (N, v2) ∈ GN

D such
that v = v1 + v2. We show a relationship among the payoffs of three games (N, v),
(N, v1) and (N, v2). From case (i) of the proof of Proposition 4.1, efficiency and the
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balanced individual excess ratio property imply that ψ on GN
D has the form given in

(4.4), but g is not guaranteed to be continuous. By linearity, we have ψh(N, v1) +

ψh(N, v2) = ψh(N, v) for all h ∈ N. This yields

g(N, v1)[v1({h})−
1
n

K(v1)] + g(N, v2)[v2({h})−
1
n

K(v2)]

=g(N, v)[v({h})− 1
n

K(v)]

=g(N, v)[v1({h}) + v2({h})−
1
n

K(v1)−
1
n

K(v2)].

Denote x = g(N, v)− g(N, v1) and y = g(N, v)− g(N, v2). The above equation
can then be rewritten as

x[v1({h})−
1
n

K(v1)] + y[v2({h})−
1
n

K(v2)] = 0.

Subtracting these equations for any two distinct players h, l ∈ N yields

x[v1({h})− v1({l})] + y[v2({h})− v2({l})] = 0. (4.9)

Step 2. Next, using (4.9) we show that g is a constant function on GN
D . We remark

that we only have to consider the individually positive games, since (N, v) ∈ GN
D

implies (N,−v) ∈ GN
D . By (4.4) applied to (N,−v), we have

ψi(N,−v) =
−v(N)

n
+ g(N,−v)[−v({i}) + 1

n ∑
k∈N

v({k})]

= −[v(N)

n
+ g(N,−v)[v({i})− 1

n ∑
k∈N

v({k})]].

By linearity, ψi(N,−v) = −ψi(N, v). Taking into account the above equation and
(4.4), we obtain g(N, v) = g(N,−v).

Let (N, v), (N, w) ∈ GN
D ∩GN

nz+ and i, j ∈ N be such that v({i}) 6= v({j}). Clearly,
there must be a player k ∈ N such that w({k}) 6= w({i}) or w({k}) 6= w({j}).
Without loss of generality, we assume that w({i}) 6= w({k}) for a given k ∈ N\{i, j}.
To show that g is a constant, we consider two cases:

Case (i): Suppose that v({i})− v({j}) 6= w({i})− w({j}) and v({i})− v({k}) 6=
w({i})−w({k}). Denote ε = ∑h∈{i,j,k}[v({h}) + w({h})]. We define the following
three games.

u(S) =



ε, if S = {i},

v({j})− v({i}) + ε, if S = {j},

w({k})− w({i}) + ε, if S = {k},

v({h}) + w({h}), if S = {h}, h ∈ N\{i, j, k}.

0, if S ⊆ N with |S| ≥ 2.
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v0(S) =



v({i})− ε, if S = {h}, h ∈ {i, j},

v({k})− w({k}) + w({i})− ε, if S = {k},

−w({h}), if S = {h}, h ∈ N\{i, j, k}.

v(S), if S ⊆ N with |S| ≥ 2.

w0(S) =



w({i})− ε, if S = {h}, h ∈ {i, k},

w({j})− v({j}) + v({i})− ε, if S = {j},

−v({h}), if S = {h}, h ∈ N\{i, j, k}.

w(S), if S ⊆ N with |S| ≥ 2.

Clearly, (i) (N, u) is individually positive with u({i}) 6= u({j}) and u({i}) 6=
u({k}); (ii) (N, v0) is individually negative with v0({i}) 6= v0({k}); (iii) (N, w0)

is individually negative with w0({i}) 6= w0({j}). Moreover, (N, u) + (N, v0) =

(N, v) and (N, u) + (N, w0) = (N, w).

By (4.9) applied to (N, u), (N, v0), (N, v), and players i, j, we have

x[u({i})− u({j})] + y[v0({i})− v0({j})] = 0.

Since u({i})− u({j}) 6= 0 and v0({i})− v0({j}) = 0, then

x = g(N, v)− g(N, u) = 0. (4.10)

Similarly, by (4.9) applied to (N, u), (N, w0), (N, w), and players i, k, we have

g(N, w)− g(N, u) = 0. (4.11)

Together, (4.10) and (4.11) imply

g(N, v) = g(N, w). (4.12)

Case (ii): Suppose that v({i})− v({j}) = w({i})−w({j}) or/and v({i})− v({k}) =
w({i})− w({k}). Let ε1, ε2, ε3 ∈ R+ be such that ε3 < min{v({i}), v({j})}+ ε1.
Consider the following games.

v3(S) =


v(S) + ε1, if S = {h}, h ∈ {i, j},

v(S) + ε2, if S = {h}, h ∈ N\{i, j}.

v(S), if S ⊆ N with |S| ≥ 2.

v4(S) =


−ε1, if S = {h}, h ∈ {i, j},

−ε2, if S = {h}, h ∈ N\{i, j}.

0, if S ⊆ N with |S| ≥ 2.
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v5(S) =

v(S) + ε1 − ε3, if S = {h}, h ∈ {i, j},

v(S), otherwise.

v6(S) =


ε3, if S = {h}, h ∈ {i, j},

ε2, if S = {h}, h ∈ N\{i, j}.

0, if S ⊆ N with |S| ≥ 2.

Notice that (N, v3), (N, v5) and (N, v6) are individually positive games, and (N, v4)

is an individually negative game. Clearly, (N, v) = (N, v3)+ (N, v4) and (N, v3) =

(N, v5) + (N, v6). By (4.9), we have x(v3({i})− v3({j})) + y(v4({i})− v4({j})) =
0, and since v3({i}) 6= v3({j}) and v4({i}) = v4({j}), we have x = g(N, v) −
g(N, v3) = 0. Similar, x(v5({i})− v5({j})) + y(v6({i})− v6({j})) = 0, and since
v5({i}) 6= v5({j}) and v6({i}) = v6({j}), we have x = g(N, v3)− g(N, v5) = 0.
Thus,

g(N, v) = g(N, v5), (4.13)

showing that g remains unchanged if two different stand-alone worths change by
the same amount, and the new game still is a member of GN

nz.

With (4.13), we can construct a game (N, v′) ∈ GN
D such that g(N, v′) = g(N, v),

v′({i}) 6= v′({j}), v′({i})− v′({j}) 6= w({i})− w({j}) and v′({i})− v′({k}) 6=
w({i})− w({k}).4

Since (N, v′) is as in Case (i), from Case (i) we have g(N, v′) = g(N, w). Thus,
g(N, v) = g(N, w).

Cases (i) and (ii) show that g(N, v) = g(N, w) for all (N, v), (N, w) ∈ GN
D , and

thus g is a constant function on GN
D . Setting β = g(N, v), we obtain (4.5) on the class

GN
D .

Step 3. Finally, we show that g is a constant function on GN
nz, and thus (4.5)

holds on GN
nz. From Step 2, we obtain (4.5) only on the class GN

D . On the other hand,
consider any game (N, v) ∈ GN

nz\GN
D such that v({i}) = v({j}) for all i, j ∈ N.

Obviously, there exists two games (N, v1), (N, v2) ∈ GN
D such that (N, v) = (N, v1) +

(N, v2). We obtain from Step 2 that g(N, v1) = g(N, v2) = β, and (4.5) holds for
(N, v1) and (N, v2). By linearity and (4.5) applied to (N, v1) and (N, v2), we have

ψi(N, v) = ψi(N, v1) + ψi(N, v2)

=
v1(N)

n
+ β[v1({i})−

1
n ∑

k∈N
v1({k})]

4To illustrate this for the case that v({i}) − v({j}) = w({i}) − w({j}) and v({i}) − v({k}) =
w({i})− w({k}) (the case that only one of these equalities is satisfied goes similar), we can construct
the game (N, v′) given by v′({i}) = v({i}) + 2v({k}), v′({j}) = v({j}) + 2v({k}) + v({i}), v′({k}) =
v({k}) + v({i}) and v′(S) = v(S) otherwise. Obviously, v′({i}) 6= v′({j}), v′({i}) − v′({j}) =
−v({j}) 6= w({i})− w({j}) and v′({i})− v′({k}) = v({k}) 6= w({i})− w({k}). Going from (N, v)
to (N, v′) in two steps ([v({i}), v({j}), v({k})] → [v({i}) + 2v({k}), v({j}) + 2v({k}), v({k})] →
[v({i}) + 2v({k}), v({j}) + 2v({k}) + v({i}), v({k}) + v({i})], we can twice apply that the value of
function g does not change, and thus g(N, v) = g(N, v′).
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+
v2(N)

n
+ β[v2({i})−

1
n ∑

k∈N
v2({k})]

=
v1(N) + v2(N)

n
+ β[v1({i}) + v2({i})−

1
n ∑

k∈N
(v1({k}) + v2({k}))]

=
v(N)

n
+ β[v({i})− 1

n ∑
k∈N

v({k})]

=
v(N)

n
,

where the last equality holds since v({i}) = v({j}) for all i, j ∈ N. This is the ED
value for any β ∈ R, and coincides with (4.1) if v({i}) = v({j}) for all i, j ∈ N.

Proof of Theorem 4.2

Before presenting the lengthy proof of Theorem 4.2, we introduce two theorems
on Cauchy functional equations.

Theorem 4.6. (see, Theorem 5.5.2, p.139, Kuczma, 2009) If f : Rn → R is a continuous
additive function, then there exists d ∈ Rn such that f (x) = ∑i∈N dixi.

For x, y ∈ Rn, let x− y = (x1 − y2, x2 − y2, . . . , xn − yn).

Theorem 4.7. Let f : R+ ×Rn−1 → R be an additive function. Then F : Rn → R given
by

F(x− y) = f (x)− f (y) for all x, y ∈ R+ ×Rn−1, (4.14)

is an additive function such that F(x) = f (x) for all x ∈ R+ ×Rn−1.

Proof. First, we show that F is well-defined (that is, the function given in (4.14) is
a valid definition of a function). Let x, y, h, l ∈ R+ × Rn−1 be such that x − h =

y − l. Hence, x + l = y + h ⇒ f (x + l) = f (y + h) ⇒ f (x) + f (l) = f (y) + f (h)
⇒ f (x)− f (h) = f (y)− f (l)⇒ F(x− h) = F(y− l), where the second implication
follows from additivity of f .

Next, we show that F is an extension of f . For any t ∈ R+ ×Rn−1, there exist
x, y ∈ R+ ×Rn−1 such that t = x − y. Hence, F(t) = F(x − y) = f (x) − f (y) =

f (y + t)− f (y) = f (y) + f (t)− f (y) = f (t), as asserted.

Finally, we show that F is additive on Rn. For any s, t ∈ Rn, there exist x, y, h, l ∈
R+ × Rn−1 such that s = x − h and t = y − l. Note that x + y and t + l are in
R+ ×Rn−1. Also, s + t = (x + y) − (h + l). Then, by (4.14), we have F(s + t) =

F((x + y)− (h+ l)) = f (x + y)− f (h+ l) = f (x) + f (y)− f (h)− f (l) = F(x− h) +
F(y− l) = F(s) + F(t), as asserted, where the third equality follows from additivity
of f .
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Theorem 4.7 is a modification of Theorem 2 in Aczél and Erdős (1965) or Lemma
6.2 in Reem (2017) that provides an extensive principle on conditional Cauchy equa-
tion5. A similar theorem (with a similar proof) holds if R+ ×Rn−1 is replaced by
R− ×Rn−1.

Next, we give additional notation and a remark. For any c = (ci)i∈N ∈ RN
+ , the

classes GN
c+ and GN

c− are denoted as follows.

GN
c+ = {(N, v) ∈ GN

nz | ∃a ∈ R+ : ∀ i ∈ N, v({i}) = aci}.
GN

c− = {(N, v) ∈ GN
nz | ∃a ∈ R− : ∀ i ∈ N, v({i}) = aci}.

That is, GN
c+ (respectively GN

c−) consists of all games in GN
nz in which the players’

stand-alone worths are in the same positive (respectively negative) proportion to c.

Remark 4.6. Each game (N, v) ∈ GN
c+ is represented by a vector pv = (pv

1, pv
S) ∈

R+ × R2n−n−1, where the first component pv
1 = v({i})

ci
is the ratio of v({i}) to ci

which is equal and positive for all i ∈ N, and the remaining 2n − n− 1 components
are the worths v(S) of the 2n − n− 1 coalitions S ⊆ N, |S| ≥ 2. Moreover, (N, v) ∈
GN

c+ ⇔ pv ∈ R+ ×R2n−n−1. Similarly, (N, v) ∈ GN
c− ⇔ pv ∈ R− ×R2n−n−1. Clearly,

(N, v) = (N, v1) + (N, v2)⇔ pv = pv1 + pv2 .

Proof of Theorem 4.2. It is easily checked that any value of the form given in (4.2)
satisfies the six axioms. To show the ‘only if’ part, let ψ be a value on GN

nz+ satisfying
the six axioms. (The proof on GN

nz− goes in a similar way.) From Remark 4.2, ψ has
the form given by (4.4). Define a function f : GN

nz+ → R by f (N, v) = K(v)g(N, v)
for all (N, v) ∈ GN

nz+, where K(v) = ∑i∈N v({i}), as defined in the beginning of
Section 4.8. Then (4.4) can be rewritten as

ψi(N, v) =
v(N)

n
+ f (N, v)

(
v({i})
K(v)

− 1
n

)
. (4.15)

Clearly, f (N, v) is continuous since K(v) and g(N, v) are continuous.

We will consider five steps to show the rest of the ‘only if’ part. Step 1 formulates
the value on GN

c+ that satisfies efficiency, the balanced individual excess ratio prop-
erty, continuity, and weak additivity. Using no advantageous reallocation across
individuals, Step 2 and Step 3 derive the coefficients of the formula obtained in Step
1 if c ∈ RN

+ is such that ci 6= cj for some i, j ∈ N. Step 4 considers the case that
c ∈ RN

+ with ci = cj for all i, j ∈ N. Step 5 gives the desired formula by anonymity.

Step 1. Pick any c ∈ RN
+ . We derive the formula of ψ on GN

c+ satisfying efficiency,
the balanced individual excess ratio property, continuity, and weak additivity. Con-
sider (N, v), (N, w) ∈ GN

c+. Since (N, v + w) ∈ GN
c+, weak additivity implies that

5 The Cauchy functional equation is a well-known and fundamental equation in the theory of func-
tional equations. It is given by f (x + y) = f (x) + f (y), where f : R → R is a continuous function. A
conditional Cauchy equation is a variation of this equation by changing the domain of validity of the
equation.
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ψi(N, v + w) = ψi(N, v) + ψi(N, w) for all i ∈ N. Taking (4.15) into account, we
obtain

f (N, v + w) = f (N, v) + f (N, w). (4.16)

Let h : R+ ×R2n−n−1 → R be defined by h(pv) = f (N, v) for all pv ∈ R+ ×
R2n−n−1 with (N, v) ∈ GN

c+ as in Remark 4.6. Then, (4.16) can be rewritten as

h(pv+w) = h(pv + pw) = h(pv) + h(pw),

which shows that h is an additive function on R+ ×R2n−n−1.

Moreover, h is continuous since f is continuous. Hence, from Theorem 4.7, there
exists an additive function H : R2n−n → R such that H(x) = h(x) for all x ∈
R+ × R2n−n−1. Obviously, H is continuous since (i) H has the form of (4.14), i.e.
H(x− y) = h(x)− h(y) for all x, y ∈ R+ ×R2n−n−1, and (ii) h is continuous. Thus,
from Theorem 4.6, there exists d ∈ R2n−n such that

h(x) = H(x) =
2n−n

∑
i=1

dixi for all x ∈ R+ ×R2n−n−1.

Equivalently, by definition of h,

f (N, v) = h(pv) = dc
1 pv

1 + ∑
S⊆N,|S|≥2

dc
Sv(S) for all (N, v) ∈ GN

c+, (4.17)

where dc
1 and dc

S, S ⊆ N, |S| ≥ 2, are real numbers, and pv
1 = v({i})

ci
∈ R for all i ∈ N

is the ratio of v({i}) to ci. Clearly, these coefficients depend on c since (N, v) ∈ GN
c+.

Taking into account that dc
1 = dc

{i} ∈ R and pv
1 = v({i})

ci
for each i ∈ N, from (4.17),

we obtain a system of n linearly independent equations. Summing these equations
over all players, we obtain

n f (N, v) = ∑
i∈N

dc
{i}
ci

v({i}) + n ∑
S⊆N,|S|≥2

dc
Sv(S). (4.18)

Since GN
c+ = GN

βc+ for all β ∈ R+, then (N, v) ∈ GN
c+ implies (N, v) ∈ GN

βc+. Thus,
similar to (4.18), we have

n f (N, v) = ∑
i∈N

dβc
{i}

βci
v({i}) + n ∑

S⊆N,|S|≥2
dβc

S v(S). (4.19)

Notice that the left-hand side of (4.18) is identical to that of (4.19), which yields

dc
{i}
ci

=
dβc
{i}

βci
, and dc

S = dβc
S for each S ⊆ N with |S| ≥ 2.
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Therefore, setting αc
{i} :=

dc
{i}

nci
and αc

S := dc
S, (4.18) can be rewritten as

f (N, v) = ∑
S⊆N

αc
Sv(S). (4.20)

Notice that αc
S is a real number depending on S and c, and, moreover, for each S ⊆ N

with |S| ≥ 2 and all β ∈ R+,
αc

S = α
βc
S . (4.21)

Substituting (4.20) into (4.15), we obtain

ψi(N, v) =
v(N)

n
+ ∑

S⊆N
αc

Sv(S)
(

v({i})
K(v)

− 1
n

)
. (4.22)

Step 2. We show that in (4.22), αc
S = αc′

S for each S ⊆ N with |S| ≥ 2, and thus αc
S,

S ⊆ N, |S| ≥ 2, does not depend on c ∈ RN
+ , if ci 6= cj for some i, j ∈ N.

With (4.21), we only need to consider any c, c′ ∈ RN
+ with ∑k∈N ck = ∑k∈N c′k.

Let i ∈ N be a player such that ci = min{ck | k ∈ N} < ∑k∈N ck
n . Suppose that

there exists j ∈ N such that ci 6= cj. Without loss of generality, we assume that

c′j ≤
∑k∈N c′k

2 . (If c′j > ∑k∈N c′k
2 , we pick h ∈ N\{i, j} and define c∗ ∈ RN

+ such that
c∗i = ci, c∗h = c′h, and ∑k∈N c∗k = ∑k∈N ck. The proof then goes in a similar way.)
Then there exists a c∗ ∈ RN

+ such that c∗i = ci, c∗j = c′j, and ∑k∈N c∗k = ∑k∈N ck.
Let (N, v), (N, w) ∈ GN

nz+ be two games such that v({k}) = ck, w({k}) = c∗k for
all k ∈ N, and v(S) = w(S) for all S ⊆ N with |S| ≥ 2. Since v({i}) = w({i}) and

∑k∈N\{i} v({k}) = ∑k∈N\{i} w({k}), no advantageous reallocation across individuals
implies

∑
k∈N\{i}

ψk(N, v) = ∑
k∈N\{i}

ψk(N, w).

With efficiency, this implies

ψi(N, v) = ψi(N, w).

Taking (4.22) into account, we obtain with v({i}) = w({i}) and K(v) = K(w) that

∑
S⊆N

αc
Sv(S) = ∑

S⊆N
αc∗

S w(S)

⇔ ∑
k∈N

αc
{k}v({k}) + ∑

S⊆N:|S|≥2
αc

Sv(S) = ∑
k∈N

αc∗
{k}w({k}) + ∑

S⊆N:|S|≥2
αc∗

S w(S)

⇔ ∑
k∈N

αc
{k}v({k}) + ∑

S⊆N:|S|≥2
αc

Sv(S) = ∑
k∈N

αc∗
{k}w({k}) + ∑

S⊆N:|S|≥2
αc∗

S v(S). (4.23)

Pick any T ⊆ N with |T| ≥ 2. Let (N, v1), (N, w1) ∈ GN
nz+ be such that v1(T) =

w1(T) 6= v(T), and v1(S) = v(S) and w1(S) = w(S) for all S ⊆ N, S 6= T. Similar
to (4.23), we can derive an equation that the only difference with (4.23) is the terms
of v1(T) and w1(T). Substituting this equation into (4.23) yields (v(T)− v1(T))αc

T =
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(v(T)− w1(T))αc∗
T , which implies

αc
T = αc∗

T .

Similarly, consider (N, w) and (N, u), where (N, u) ∈ GN
nz+ is such that u({k}) =

c′k for all k ∈ N, and u(S) = w(S) otherwise. We obtain

αc′
T = αc∗

T ,

where c∗ is as defined before. Thus, αc
T = αc′

T for each T ⊆ N with |T| ≥ 2.

Step 3. We show that in (4.22), there exists α1 ∈ R such that ∑k∈N αc
{k}v({k}) =

α1 ∑k∈N v({k}) for all (N, v) ∈ GN
c+ and all c ∈ RN

+ with ci 6= cj for some i, j ∈ N.
Indeed, for (N, v), (N, w) ∈ GN

nz+ defined in Step 2, taking v(S) = 0 for all S ⊆ N
with |S| ≥ 2, from (4.23) we obtain

∑
k∈N

αc
{k}v({k}) = ∑

k∈N
αc∗
{k}w({k}).

Denote α1 =
∑k∈N αc∗

{k}w({k})
∑k∈N w({k}) . Since ∑k∈N v({k}) = ∑k∈N w({k}), then

∑
k∈N

αc
{k}v({k}) = ∑

k∈N
αc∗
{k}w({k}) = α1 ∑

k∈N
w({k}) = α1 ∑

k∈N
v({k}).

Similarly, applying (4.23) to (N, w) and (N, u) defined in Step 2, we obtain

∑
k∈N

αc′
{k}u({k}) = ∑

k∈N
αc∗
{k}w({k}) = α1 ∑

k∈N
u({k}).

These two equations imply that the desired assertion holds if v({i})
ci

= 1 and

∑i∈N ci is a fixed real number. Let β ∈ R+ and (N, v) ∈ GN
βc+ = GN

c+ be such that
v({i})

βci
= 1, i.e. v({i})

ci
= β. Since (N, v) ∈ GN

c+, from above it follows that GN
c+ = GN

βc+,

then ∑k∈N αc
{k}v({k}) = ∑k∈N α

βc
{k}v({k}) = α1 ∑k∈N v({k}), as desired.

Step 4. The ‘Step 2’ and ‘Step 3’ considered the case that c ∈ RN
+ satisfies ci 6= cj

for some i, j ∈ N. Notice that if ck = ch for all k, h ∈ N, each αc
S in (4.22) does not

have any bite.

Step 5. From Steps 2, 3 and 4, we can conclude that, taking αc
S = αN

S for each
S ⊆ N with |S| ≥ 2, and αc

{k} = α1 for all k ∈ N, (4.22) can be written as

ψi(N, v) =
v(N)

n
+

[
α1 ∑

k∈N
v({k}) + ∑

S⊆N:|S|≥2
αN

S v(S)
](

v({i})
K(v)

− 1
n

)
. (4.24)
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It is straightforward to show that αN
S = αN

T for all |S| = |T| ≥ 2 in (4.24) by
anonymity. Therefore, setting α

|N|
|S| = αN

S , we obtain

ψi(N, v) =
v(N)

n
+ ∑

S⊆N
α
|N|
|S| v(S)

(
v({i})
K(v)

− 1
n

)
,

as desired.

Proof of Theorem 4.4

Before giving the technical proof of Theorem 4.4, we give a brief sketch. We
first formulate what projection consistency requires from the relationship between
α(N, v) and α(N\{j}, vx) (Step 1 below). Then, the key idea of the calculation of
α(N, v) is to derive the coefficients αN

S by considering some special games. We de-
rive that (i) the coefficients corresponding to the grand coalition are equal for grand
coalitions of the same size (Step 2), (ii) the coefficients corresponding to singletons
are equal (Step 3), and (iii) the coefficients of other coalitions are zero (Step 3). After
that, we derive the formula of α(N, v) (Step 4).

Proof of Theorem 4.4. Let α(N, v) = ∑
S⊆N

αN
S v(S) be a linear function with αN

S being

real numbers depending on S and N. We remark that, for any (N, v) ∈ Gnz with
|N| ≥ 3, x = ψα(N, v) and j ∈ N, since vx({i}) = v({i}) for all i ∈ N \ {j}, it holds
that (N\{j}, vx) ∈ Gnz. Clearly, ψα

i (N, v) can be rewritten as

ψα
i (N, v) =

v(N)

n
+ α(N, v)

( v({i})
∑k∈N v({k}) −

1
n
)
. (4.25)

Step 1. Take any (N, v) ∈ Gnz with |N| ≥ 3 and j ∈ N. For x = ψα(N, v) and any
i ∈ N\{j}, we have

ψα
i (N\{j}, vx) =

vx(N\{j})
n− 1

+ α(N\{j}, vx)
( vx({i})

∑k∈N\{j} vx({k}) −
1

n− 1
)

=
v(N)− xj

n− 1
+ α(N\{j}, vx)

v({i})− 1
n−1 ∑k∈N\{j} v({k})

∑k∈N\{j} v({k})

=
1

n− 1
(
v(N)− v(N)

n
− α(N, v)

v({j})− 1
n ∑k∈N v({k})

∑k∈N v({k})
)

+ α(N\{j}, vx)
v({i})− 1

n−1 ∑k∈N\{j} v({k})
∑k∈N\{j} v({k})

=
v(N)

n
− α(N, v)

v({j})− 1
n ∑k∈N v({k})

(n− 1)∑k∈N v({k})

+ α(N\{j}, vx)
v({i})− 1

n−1 ∑k∈N\{j} v({k})
∑k∈N\{j} v({k}) ,

where the third equality follows by substituting x = ψα(N, v).
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From projection consistency, ψα
i (N, v) = ψα

i (N\{j}, vx) for all i ∈ N\{j}, and
thus we have

v(N)

n
+ α(N, v)

v({i})− 1
n ∑k∈N v({k})

∑k∈N v({k})

=
v(N)

n
− α(N, v)

v({j})− 1
n ∑k∈N v({k})

(n− 1)∑k∈N v({k})

+ α(N\{j}, vx)
v({i})− 1

n−1 ∑k∈N\{j} v({k})
∑k∈N\{j} v({k}) ,

which is equivalent to

α(N, v)
∑k∈N v({k})

(
v({i})− ∑k∈N v({k})

n
+

v({j})− 1
n ∑k∈N v({k})
n− 1

)
=

α(N\{j}, vx)

∑k∈N\{j} v({k})

(
v({i})−

∑k∈N\{j} v({k})
n− 1

)
.

Since

− ∑k∈N v({k})
n

+
v({j})− 1

n ∑k∈N v({k})
n− 1

=
−(n− 1)∑k∈N v({k}) + nv({j})−∑k∈N v({k})

n(n− 1)

=
−∑k∈N v({k}) + v({j})

n− 1
,

it follows that

α(N, v)
∑k∈N v({k})

(
v({i})−

∑k∈N\{j} v({k})
n− 1

)
=

α(N\{j}, vx)

∑k∈N\{j} v({k})

(
v({i})−

∑k∈N\{j} v({k})
n− 1

)
.

Since there always exists a game (N, v) ∈ Gnz such that v({i})− ∑k∈N\{j} v({k})
n−1 6= 0,

then
α(N, v)

∑k∈N v({k}) =
α(N\{j}, vx)

∑k∈N\{j} v({k})

for this game.

With the notion K = ∑k∈N v({k}), we have

α(N, v)
K

=
α(N\{j}, vx)

K− v({j}) . (4.26)

By definition of α, vx and x = ψα(N, v), we have

α(N\{j}, vx)

= ∑
S⊂N\{j}

α
N\{j}
S v(S) + α

N\{j}
N\{j}(v(N)− xj)
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= ∑
S⊂N\{j}

α
N\{j}
S v(S) + α

N\{j}
N\{j}

(n− 1
n

v(N)− ∑
S⊆N

αN
S v(S)

v({j})− K
n

K
)
. (4.27)

Step 2. We show that α
N\{i}
N\{i} = α

N\{j}
N\{j} for all i, j ∈ N. To show this, con-

sider a game (N, v) ∈ Gnz with i, j ∈ N such that v({i}) = v({j}) and v({i}) −
∑k∈N\{j} v({k})

n−1 6= 0 (It is possible since |N| ≥ 3). From (4.26) we have α(N\{i}, vx) =

α(N\{j}, vx). That is, with (4.27),

∑
S⊂N\{i}

α
N\{i}
S v(S) + α

N\{i}
N\{i}

(n− 1
n

v(N)− ∑
S⊆N

αN
S v(S)

v({i})− K
n

K
)

= ∑
S⊂N\{j}

α
N\{j}
S v(S) + α

N\{j}
N\{j}

(n− 1
n

v(N)− ∑
S⊆N

αN
S v(S)

v({j})− K
n

K
)
. (4.28)

The coefficients of the term v(N) must be the same on both sides of (4.28), that is

α
N\{i}
N\{i}

(n− 1
n
− αN

N
v({i})− K

n
K

)
= α

N\{j}
N\{j}

(n− 1
n
− αN

N
v({j})− K

n
K

)
.

No matter what number αN
N is, there is a game such that n−1

n − αN
N

v({i})− K
n

K 6= 0. 6

Thus,

α
N\{i}
N\{i} = α

N\{j}
N\{j} for all i, j ∈ N. (4.29)

Step 3. We derive α
N\{k}
T for any k ∈ N and T ⊂ N\{k}, as follows. Using (4.29),

it follows from (4.28) and the fact that v({i}) = v({j}), that

∑
S⊂N\{i}

α
N\{i}
S v(S) = ∑

S⊂N\{j}
α

N\{j}
S v(S). (4.30)

To derive α
N\{k}
T , we consider two cases with respect to |T|, T ⊂ N:

(i) For T ⊂ N with |T| ≥ 2, there exist i, j ∈ N with T ⊂ N\{i} and j ∈ T. Clearly,
the term v(T) only appears in the left-hand side of (4.30), and thus it must be
that α

N\{i}
T = 0. (We see this by taking two games that only differ in the worth

of T.) Similarly, α
N\{j}
T = 0 for all T ⊂ N\{j} with i ∈ T and |T| ≥ 2.

Since i, j ∈ N can be arbitrary two players, we obtain

α
N\{k}
T = 0, (4.31)

for all T ⊂ N with |T| ≥ 2.

6For example, a game (N, v) such that there is an i0 ∈ N with v({i0}) = 2 and v({j}) = 1 for all
j ∈ N \ {i0} will do the job if αN

N 6= (n + 1), and a game (N, v) such that there are i0, i1 ∈ N with
v({i0}) = v({i1}) = 2 and v({j}) = 1 for all j ∈ N \ {i0, i1} will do the job otherwise.
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(ii) Consider T ⊂ N with |T| = 1. Since (4.30) holds under the condition v({i}) =
v({j}), it must be that α

N\{i}
{j} v({j}) = α

N\{j}
{i} v({i}). (We see this by taking two

games that only differ in the worths of {i} and {j} and using (4.31).) Since
v({i}) = v({j}) 6= 0, then α

N\{i}
{j} = α

N\{j}
{i} . Similarly, it is clear that α

N\{i}
{k} =

α
N\{j}
{k} for all k ∈ N\{i, j}.

Since i, j ∈ N can be arbitrary two players, then α
N\{i}
{j} = α

N\{k}
{j} = α

N\{j}
{k} =

α
N\{i}
{k} for all k ∈ N\{i, j}. Therefore,

α
N\{k}
{i} = α

N\{k}
{j} , (4.32)

for all i, j ∈ N\{k} and all k ∈ N.

Step 4. Now, we can derive the desired assertion. Using (4.32), we denote βn−1 =

α
N\{k}
i for all i ∈ N\{k}. Plugging (4.31) and (4.32) into the second line of (4.27), we

have that for all j ∈ N,

α(N\{j}, vx) = βn−1 ∑
k∈N\{j}

vx({k}) + α
N\{j}
N\{j}v

x(N\{j})

= βn−1(K(v)− v({j})) + α
N\{j}
N\{j}v

x(N\{j}).

Consider a game (N′, v′) ∈ Gnz with N′ = N ∪ {j}, j 6∈ N, (v′)x = v. Similar as
above, denoting βn = αN

i for all i ∈ N, we obtain

α(N, v) = βnK(v) + αN
Nv(N). (4.33)

Therefore, (4.26) can be written as

βn +
αN

Nv(N)

K

= βn−1 +
α

N\{j}
N\{j}v

x(N\{j})
K− v({j})

= βn−1 +
α

N\{j}
N\{j}

K− v({j})

(
n− 1

n
v(N)− αN

Nv(N)
v({j})− K

n
K

− βn(v({j})− K
n
)

)
,

where the second equality follows from (4.25).

Considering any game (N, v) ∈ Gnz such that K(v) = n and v({j}) = 1 (for
example by taking a game (N, v), |N| ≥ 3, such that v({i0}) = 0.5, v({i1}) = 1.5,

and v({k}) = 1 for all k ∈ N\{i0, i1}), we obtain βn +
αN

Nv(N)
n = βn−1 +

α
N\{j}
N\{j}v(N)

n .
Since v(N) can take any number, it must be that βn−1 = βn (by taking a game with
v(N) = 0) and then αN

N = α
N\{j}
N\{j} (by taking a game with v(N) > 0). Hence, for any
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(N, v) ∈ Gnz, the above equation can be written as follows:

αN
Nv(N)

K
=

αN
N

K− v({j})

(
n− 1

n
v(N)− αN

Nv(N)
v({j})− K

n
K

− βn(v({j})− K
n
)

)
,

which implies that

(
K− v({j})

)
αN

Nv(N) = KαN
N

(
n− 1

n
v(N)− αN

Nv(N)
v({j})− K

n
K

− βn(v({j})− K
n
)

)
.

(4.34)

There are two parameters αN
N and βn to be determined in (4.34). We distinguish

the following two cases:

(i) If αN
N = 0, then βn can take any real number, and thus (4.6) gives an affine

combination of the ED value and ESD value.

(ii) If αN
N 6= 0, then

(K− v({j}))v(N) = K
n− 1

n
v(N)− (αN

Nv(N) + Kβn)
(
v({j})− K

n
)
. (4.35)

It follows from (4.35) that

v(N)
(
v({j})− K

n
)
= (αN

Nv(N) + Kβn)
(
v({j})− K

n
)
.

Considering any game with v({j})− K
n 6= 0, we obtain

αN
Nv(N) + Kβn = v(N). (4.36)

Since this must hold for any v(N), it follows that βn = 0 (by taking v(N) = 0),
and thus αN

N = 1 (by taking v(N) > 0). Hence, (4.6) gives the PD value.

We conclude from (4.33), and Cases (i) and (ii), that if ψα satisfies projection con-
sistency, then α(N, v) = β ∑k∈N v({k}), β ∈ R, or α(N, v) = v(N). Therefore,

ψα(N, v) =

βESD(N, v) + (1− β)ED(N, v), if α(N, v) = β ∑k∈N v({k}),

PD(N, v), if α(N, v) = v(N).

The above assertion holds for |N| ≥ 3. We now turn to the case |N| = 2. We
already know that β|N

′|−1 = β|N
′| and αN′

N′ = α
N′\{j}
N′\{j} for all |N′| ≥ 3 and all j ∈ N′.

Meanwhile, Cases (i) and (ii) hold for |N′| ≥ 3. Specifically, taking |N′| = 3, we
obtain that α(N, v) = v(N) or α(N, v) = β ∑k∈N v({k}) for |N| = |N′| − 1 = 2,
which immediately yields the desired assertion.
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Proof of Theorem 4.3. As mentioned in the main text, since the class of α-mollified
values is contained in the class of α-mollified generalized values, and the resulting
values in Theorem 4.4 are also members in the family of α-mollified values, we ob-
tain Theorem 4.3 as a corollary of Theorem 4.4. A direct proof of Theorem 4.3 can be
given by omitting Step 2 and Step 3 of the proof of Theorem 4.4.

Proof of Theorem 4.5. In view of (4.7), we have

∑
π∈Π(N)

1
n!

ηπ,α
i

= ∑
π∈Π(N):

π(i)=1

1
n!

[
v({i}) + ∑

j∈N:π(j)>π(i)

v(Sj
π)−v(Sj

π\{j})− v({j})α(N,v)
∑k∈N v({k})

π(j)−1

]
+ ∑

π∈Π(N):
π(i)=n

1
n!

v({i})α(N,v)
∑k∈N v({k})

+ ∑
π∈Π(N):
π(i) 6=1,n

1
n!

[
v({i})α(N,v)
∑k∈N v({k}) + ∑

j∈N:π(j)>π(i)

v(Sj
π)−v(Sj

π\{j})− v({j})α(N,v)
∑k∈N v({k})

π(j)−1

]

=
v({i})

n
+

n− 1
n

v({i})α(N,v)
∑k∈N v({k}) +

1
n! ∑

π∈Π(N)
∑

j∈N:π(j)>π(i)

v(Sj
π)−v(Sj

π\{j})− v({j})α(N,v)
∑k∈N v({k})

π(j)−1 , (4.37)

where the second equality holds since there are (n− 1)! (respectively (n− 1)(n− 1)!)
permutations such that i has (respectively does not have) the first position, the same
for the last position.

Note that for each coalition S ⊆ N with j ∈ S, there are (n− s)!(s− 1)! permu-
tations such that the first s players are exactly the members of S and j has the sth
position. Hence, the third term of the right-hand side in (4.37) can be rewritten as
follows:

∑
j∈N\{i}

∑
S⊆N:i,j∈S

v(S)− v(S\{j})− v({j})α(N,v)
∑k∈N v({k})

s− 1
(n− s)!(s− 1)!

n!

= ∑
j∈N\{i}

∑
S⊆N:i,j∈S

(n− s)!(s− 2)!
n!

[v(S)− v(S\{j})]

− ∑
j∈N\{i}

[
v({j})α(N, v)
∑k∈N v({k}) ∑

S⊆N:i,j∈S

(n− s)!(s− 2)!
n!

]
.

(4.38)

We can rewrite the first term as

∑
j∈N\{i}

∑
S⊆N:i,j∈S

(n− s)!(s− 2)!
n!

[v(S)− v(S\{j})]

= ∑
S⊆N:|S|≥2,i∈S

∑
j∈S\{i}

(n− s)!(s− 2)!
n!

[v(S)− v(S\{j})]

=
n

∑
s=2

∑
S⊆N:i∈S,|S|=s

(s− 1)!(n− s)!
n!

v(S)−
n−1

∑
s=1

∑
S⊆N:i∈S,|S|=s

(s− 1)!(n− s)!
n!

v(S)
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=
(n− 1)!(n− n)!

n!
v(N)− (1− 1)!(n− 1)!

n!
v({i})

=
v(N)

n
− v({i})

n
.

Since

∑
S⊆N:i,j∈S

(n− s)!(s− 2)!
n!

=
n

∑
s=2

(n− s)!(s− 2)!
n!

(n− 2)!
(n− s)!(s− 2)!

= (n− 1)
(n− 2)!

n!
=

1
n

,

we obtain from (4.37) and (4.38) that

∑
π∈Π(N)

1
n!

ηπ,α
i =

v({i})
n

+
n− 1

n
v({i})α(N,v)
∑k∈N v({k}) +

v(N)

n
− v({i})

n
− 1

n
∑j∈N\{i} v({j})α(N,v)

∑k∈N v({k})

=
v({i})

∑k∈N v({k})α(N, v) +
1
n
(
v(N)− α(N, v)

)
,

as desired.

4.9 Conclusion

In this chapter, we have introduced a parametric family of values, called α-mollified
values, that allocate the worth of the grand coalition based on proportional and
equal division methods. We have axiomatized this family by employing efficiency,
the balanced individual excess ratio property, continuity, weak additivity, anonymity,
and no advantageous reallocation across individuals. Moreover, we have provided
a novel analytical approach to select the PD value and the affine combinations of the
ED and ESD values from the class of α-mollified values by imposing projection con-
sistency. We did this using a larger class of α-mollified generalized values. Finally,
we have implemented each member of this family based on a one-by-one formation
of the grand coalition.

Proportional and equal division are two famous allocation principles in eco-
nomics. Besides combining these two principles, the α-mollified values also allow
that the part of the worth of the grand coalition to which we apply proportionality,
respectively equality, depends on the worths of all coalitions. Whereas usual pro-
portional and equal division solutions only take account of the worths of singletons
and the grand coalition, the α-mollified values might thus depend on the worths of
all coalitions.7

Since the family of α-mollified (generalized) values offers a simple yet flexible
compromise between proportionality and equality principles, it is worthwhile to
investigate some values within this family. In this framework, Chapter 5 will focus
on a subfamily of α-mollified values.

7Other proportional solutions that take the worths of all coalitions into account are the proper Shap-
ley values (Vorob’ev and Liapunov, 1998), the proportional Shapley value (Béal et al., 2018), and the
proportional Harsanyi solution (Besner, 2020).
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Future research on the α-mollified (generalized) values will be done on, for exam-
ple, axiomatization and strategic implementation. In reality, the weight of a coalition
may depend on the members of this coalition, and thus it is interesting to investigate
what axiomatizations can be employed for the family of α-mollified generalized val-
ues. Besides, the dual value of an α-mollified value might be worth investigating.
Some interesting values are the PANSC value (see Chapter 3), the EANSC value, and
their convex combinations.
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Chapter 5

Sharing the Surplus and
Proportional Values

5.1 Introduction

Equal and proportional division are two basic principles in allocation problems. In
TU-games, usually these principles are applied to a remainder of the surplus after
each individual player is assigned an individual entitlement which can be equal to
zero. For two-player games, this can be formalized in axioms such as standardness
(assigning each player its stand-alone worth and allocating the surplus equally over
all players), egalitarian standardness (ignoring individual entitlements and allocating
the full worth equally over the players (which can be zero too)), and proportional
standardness (allocating the full surplus proportional to the stand-alone worths of
the players). For example, the Shapley value (Shapley, 1953a) and the equal surplus
division value (Driessen and Funaki, 1991) satisfy standardness, the equal division
value (axiomatized in van den Brink (2007)) satisfies egalitarian standardness, and
various proportional values, such as the proportional value (Ortmann, 2000), the
proportional Shapley value (Béal et al., 2018; Besner, 2019), the proper Shapley val-
ues (Vorob’ev and Liapunov, 1998; van den Brink et al., 2015; van den Brink et al.,
2020), and the proportional Harsanyi solution (Besner, 2020) satisfy proportional
standardness. The values can be extended to games with more than two players
by, for example reduced game consistency or balanced contributions type of axioms
that relate payoffs of players in a game with their payoffs in a game on a reduced
player set.

There is a large literature on ‘equal sharing of the surplus’ type of values. In
contrast, values that appear to be ‘proportional’ are studied less, although propor-
tional considerations play a central role in fair division problems as pointed out by
a group of economists and academics, e.g., Brams and Taylor (1996), Chun (1988),
Moulin (1987), Moulin (2004), Thomson (2015a), Tijs and Driessen (1986), and Young
(1995). However, recently there is a growing literature on values that are based on
proportionality, such as the values mentioned above.

In this chapter, which is based on Zou et al. (2020b), we provide a new family
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of values, called the proportional surplus division values which make a trade-off be-
tween a player’s stand-alone worth and the average stand-alone worth, and allocate
the remainder proportional to the stand-alone worths. Extreme cases of values in
our family are the proportional division value based on Moriarity (1975) and Gangolly
(1981), and shortly denoted by the PD value (see Chapter 2), and the egalitarian pro-
portional surplus division value, shortly denoted by the EPSD value. The PD value al-
locates the worth of the grand coalition in proportion to players’ stand-alone worth.
The EPSD value is a new value that assigns to each player the average stand-alone
worth, and then allocates the remainder of the worth of the grand coalition in pro-
portion to players’ stand-alone worth. The EPSD value focuses on egalitarianism
in allocating the stand-alone worths by first assigning to every player the average
of all stand-alone worths, whereas the PD value applies an egocentric principle and
first assigns to each player its stand-alone worth. Both values apply proportionality
in the allocation of the remaining surplus. Besides these two extreme values, our
family consists of all convex combinations of the PD value and the EPSD value, and
thus can be viewed as making a trade-off between egocentrism and egalitarianism.
This family of values is in line with a recent and growing literature that combine
different allocation principles by considering convex combinations of two extreme
values, such as the egalitarian Shapley values (being convex combinations of the
Shapley value and equal division value, see Joosten (1996) and van den Brink et al.
(2013)), the consensus values (being convex combinations of the Shapley value and
equal surplus division value, see Ju et al. (2007b)) and the family of convex combi-
nations of the equal division value and the equal surplus division value (axioma-
tized in, e.g., van den Brink and Funaki (2009), van den Brink et al. (2016), Xu et al.
(2015), and Ferrières (2017)). Also, our family of values is in line with a recent and
growing literature on non-symmetric surplus sharing values, such as the weighted
division value (Béal et al., 2015; Béal et al., 2016b), the weighted surplus division
value (Calleja and Llerena, 2017; Calleja and Llerena, 2019), and the weighted equal
allocation of non-separable contributions value (Hou et al., 2019) 1.

Besides several known axioms from the literature, we introduce new axioms
concerning the separatorization of a player. Separatorization2 refers to a player’s
obstruction of cooperation in the sense that the worth of any coalition containing
him equals the sum of the stand-alone worths of the players in this coalition, while
the worth of any coalition without this player remains unchanged. This is not to be
confused with dummification as introduced in Béal et al. (2018) (strengthening nul-
lification studied in Gómez-Rúa and Vidal-Puga (2010), Béal et al. (2016a), Ferrières
(2017), Kongo (2018), Kongo (2019), and Kongo (2020)), where a player becomes a
dummy player. The first axiom, called proportional loss under separatorization, requires

1The difference with our work and the papers here is that our weights are endogenous and they
have exogenously given weights.

2We thank André Casajus for suggesting the names of separator and separatorization at the 15th
European Meeting on Game Theory.
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that if a player becomes a separator, then all other player’s payoff change in propor-
tion to their stand-alone worths. The second axiom, called proportional balanced con-
tributions under separatorization, requires that, for any two players, the effects of one
of them becoming a separator on the payoff of the other, are proportional to their
stand-alone worths.

Following Ferrières (2017) and Béal et al. (2018), we identify the consequence
of imposing either of the aforementioned axioms in addition to the classical axiom
of efficiency. It turns out that the resulting values have all in common that they
split the worth of the grand coalition in proportion to players’ stand-alone worth.
Moreover, any member of this family is uniquely determined by a value defined on
additive games (being games where all players are separators and thus the worth of
every coalition equals the sum of the stand-alone worths of the players in that coali-
tion). Subsequently, we characterize a family of values for quasi-additive games by
means of known axioms of efficiency, anonymity, a weak version of weak no ad-
vantageous reallocation, and continuity, which generalizes a remarkable result for
rights problems in Chun (1988). By combining the axioms in these results and using
weak linearity instead of continuity, the family of affine combinations of the PD and
EPSD values is characterized. Replacing anonymity with superadditive monotonic-
ity (Ferrières, 2017) and weak desirability, we derive an axiomatization of the family
of convex combinations of the PD and EPSD values. Besides, we show how specific
values are singled out by using a parametrized axiom which puts a certain lower
bound on the payoffs of individual players.

This chapter is organized as follows. Section 5.2 provides some notation and def-
initions. Section 5.3 introduces the concept of proportional surplus division values.
Section 5.4 and Section 5.5 contain the results. Section 5.6 shows the logical inde-
pendence of the axioms in the characterization results. All proofs are provided in
Section 5.7. Section 5.8 presents a conclusion.

5.2 Definitions and Notation

We recall some definitions from Chapter 1 that are used in this chapter. Recall that
GN

nz denotes the class that consists of all individually positive and individually neg-
ative games on a specific player set N. AN

nz denotes the class of additive games from
GN

nz, and QAN
nz denotes the class of quasi-additive games from GN

nz. Béal et al. (2018)
provide many applications of the restricted class of games GN

nz, such as land produc-
tion economies, telecommunication problems, and sequencing/queueing problems.
We restrict our discussion to this class of games. Let G≥3

nz = {(N, v) ∈ GN
nz | |N| ≥ 3},

QA≥3
nz = {(N, v) ∈ QAN

nz | |N| ≥ 3}, and A≥3
nz = {(N, v) ∈ AN

nz | |N| ≥ 3}.
As mentioned in the introduction, this chapter will focus on a new class of val-

ues that is closely related to the proportional division value. The definition of the
proportional division (PD) value is given as follows.
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The PD value on C ⊆ GN
nz is defined for all (N, v) ∈ C and i ∈ N by

PDi(N, v) =
v({i})

∑j∈N v({j})v(N).

We present three known properties of values on special classes of TU-games.
Note that the second property is not yet discussed in Chapter 1.

• Weak desirability. For all (N, v) ∈ AN
nz and i, j ∈ N such that v({i}) ≥ v({j})3,

it holds that ψi(N, v) ≥ ψj(N, v).

• Weak no advantageous reallocation. For all quasi-additive games (N, v), (N, w) ∈
QAN

nz and T ⊆ N such that ∑i∈T v({i}) = ∑i∈T w({i}), v({i}) = w({i}) for all
i ∈ N\T, and v(N) = w(N), it holds that ∑i∈T ψi(N, v) = ∑i∈T ψi(N, w).

• Continuity. For all sequences of games {(N, wk)} and game (N, v) in QAN
nz

such that lim
k→∞

(N, wk) = (N, v), it holds that lim
k→∞

ψ(N, wk) = ψ(N, v).

Weak desirability states that if i’s contributions are greater than or equal to j’s
contributions in an additive game, then i should receive at least j’s payoff. The
condition v(S ∪ {i}) ≥ v(S ∪ {j}) in weak desirability is equivalent to v({i}) ≥
v({j}) for additive games.

Weak no advantageous reallocation states that transfers of individual productiv-
ities across a subset of players do not affect the total payoffs of this coalition.

Continuity states that a small change in the parameters of the game causes only
a small change in the payoff.

Weak no advantageous reallocation considers two games that the worths of inter-
mediate coalitions are determined by the stand-alone worths, whereas weak no ad-
vantageous reallocation across individuals in Chapter 4 considers the fixed worths
of intermediate coalitions of two games. This axiom and continuity are required only
for quasi-additive games. Moulin (1987) and Chun (1988), respectively, used the last
two axioms in surplus problems and rights problems, which can be considered as
quasi-additive games.

5.3 Proportional surplus division values

In this chapter, we characterize families of combinations of the PD value and a new
value called EPSD value. We begin this section by defining this new value.

The egalitarian proportional surplus division (EPSD) value on C ⊆ GN
nz is defined for

all (N, v) ∈ C and i ∈ N by

EPSDi(N, v) =
1
|N| ∑

j∈N
v({j}) + v({i})

∑j∈N v({j}) [v(N)− ∑
j∈N

v({j})].

3Notice that for additive games this is equivalent to v(S ∪ {i}) ≥ v(S ∪ {j}) for all S ⊆ N\{i, j}.
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Similar as other values mentioned before, the EPSD value is based on the idea
of first assigning individual entitlements to the players, and then allocating the re-
mainder of v(N) over all players using an egalitarian or proportionality principle.
In the case of the EPSD value, we first assign to every player the average stand-
alone worth, and then allocate the remainder proportional to the stand-alone worths.
Thus, the individual entitlements reflect egalitarianism in the sense that all stand-
alone worths are equally shared among all players. However, discrimination is
made in the allocation of the remainder which is allocated proportional to the stand-
alone worths.

To compare the EPSD value with the PD value, notice that the PD value can be
written as

PDi(N, v) = v({i}) + v({i})
∑j∈N v({j}) (v(N)− ∑

j∈N
v({j}))

for all (N, v) ∈ C and i ∈ N. So, splitting the allocation of v(N) into (i) the allocation
of all stand-alone worths, and (ii) the allocation of the remainder of the worth of the
grand coalition after subtracting all stand-alone worths, both the PD and EPSD val-
ues allocate the remainder proportional to the stand-alone worths, but the PD value
also discriminates in the allocation of the stand-alone worths (in the sense that every
players gets its own stand-alone worth), whereas the EPSD value only discriminates
with respect to allocating the remainder (allocating it proportional to the stand-alone
worths) and allocates all stand-alone worths equally over all players. Although our
main motivation for the EPSD value comes from the axiomatizations in Section 5.4,
a direct motivation for the EPSD value is that, similar as in other resource allocation
models, such as bankruptcy problems, applying proportional division might leave
some players (with relatively small stand-alone worths) with a (too) small share in
the resource. This can be ‘solved’ by allocating an initial uniform share to all players.
In the EPSD value this share is restricted by the sum of all stand-alone worths.

Table 5.1 clarifies the difference among the ED, ESD, PD and EPSD values by
the way they allocate (i) the sum of all stand-alone worths ∑j∈N v({j}), and (ii) the
surplus v(N)−∑j∈N v({j}) that is left from the worth of the grand coalition. These
are allocated either equally over the players (E-principle) or proportional to their
stand-alone worths (P-principle). Whereas the ED, ESD and PD values have been
studied in the literature, the EPSD value is not and thus fills a gap.

TABLE 5.1: Values and division principles

Values ∑j∈N v({j}) v(N)−∑j∈N v({j})
E-principle P-principle E-principle P-principle

ED
√ √

ESD
√ √

PD
√ √

EPSD
√ √
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Obviously, whereas the ED, respectively PD, values are the E-principle, respec-
tively P-principle, in both aspects, the ESD value and the EPSD value reflect equal
as well as proportional sharing. Specifically, the ESD value allocates the amounts
of ∑j∈N v({j}) and v(N)−∑j∈N v({j}) by respectively applying the P-principle and
the E-principle, while the EPSD value does it the other way around.

Example 5.1. Consider a game (N, v), where N = {1, 2, 3} and the characteris-
tic function is given as v(∅) = 0, v({1}) = v({2}) = 1, v({3}) = 2, v({1, 2}) =

4, v({1, 3}) = 6, v({2, 3}) = 8, v({1, 2, 3}) = 9. We compute the ED, ESD, PD, and
EPSD values as

ED = (3, 3, 3); ESD(N, v) = (
8
3

,
8
3

,
11
3
);

PD = ( 9
4 , 9

4 , 9
2 ); EPSD(N, v) = (

31
12

,
31
12

,
23
6
).

All the four values are on one line. The ED and PD values are two extreme points
and the EPSD and ESD values are on the line segment.

In this chapter, we consider combinations of the EPSD value and the PD value.
For all (N, v) ∈ GN

nz and α ∈ R, the corresponding value ϕα, called α-proportional
surplus division value, is defined by

ϕα(N, v) = αEPSD(N, v) + (1− α)PD(N, v).

It is straightforward to verify that for all (N, v) ∈ GN
nz and all i ∈ N, it holds that

ϕα
i (N, v) =

α

n ∑
j∈N

v({j}) + v({i})
∑j∈N v({j}) [v(N)− ∑

j∈N
αv({j})]. (5.1)

The value ϕα(N, v) first assigns to every player the fraction α of the average
stand-alone worth, and then allocates the remainder (which might be negative) pro-
portional to the stand-alone worths.

Alternatively, (5.1) can be rewritten as follows.

ϕα
i (N, v) =

α

n ∑
j∈N

v({j}) + (1− α)v({i}) + v({i})
∑j∈N v({j}) [v(N)− ∑

j∈N
v({j})]. (5.2)

This formulation makes clear that an α-proportional surplus division value can
also be interpreted as first assigning to every player affine combination of the aver-
age and its own stand-alone worth, and then allocating the surplus v(N)−∑j∈N v({j})
proportional to the stand-alone worths. The payoff 1

n ∑j∈N v({j}) can be viewed as
an egalitarian distribution, while the payoff v({i}) can be interpreted as an egocen-
tric distribution of the stand-alone worths. Hence, if α ∈ [0, 1] the value ϕα(N, v)
can be seen as making a trade-off between egocentrism and egalitarianism, where
the coefficient α ∈ [0, 1] is a measure of the social preference between egocentrism
and egalitarianism. In the extreme cases, α = 1 yields the EPSD value and reflects
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that the society prefers egalitarianism, while α = 0 yields the PD value and reflects
that the society prefers egocentrism.

In what follows, we refer to the class of values as ‘proportional surplus division
values’.

5.4 Axiomatizations of the family of proportional surplus di-
vision values

In this section, we provide axiomatizations of the family of proportional surplus di-
vision values using known axioms and either one of two new axioms. These new
axioms are concerned with how a value should respond to the separatorization of
a player in a game. Separatorization of a player refers to the complete loss of pro-
ductive potential of cooperation within any coalition containing this player. Notice
that, in case the worth of a coalition is less than the sum of the stand-alone worths
of the players in the coalition, then separatorization results in a higher worth of the
coalition since the mutual destruction aspect that is in the game is removed.

More specifically, a new game is constructed from the original one, in which the
worth of any coalition containing the separator is equal to the sum of the stand-alone
worths of the players in this coalition. A separatorization can also lead from a com-
plete disaster (total mutual obstruction) of a coalition to a worth that corresponds to
the sum of the singleton worths. Different than a nullifying player, whose entrance
to a coalition implies that the total worth becomes zero, the entrance of a separator
still allows the players to earn their stand-alone worth. This might occur, for exam-
ple in a peaceful bargaining situation between countries, where a separator is a kind
of ‘saboteur’ who makes negotiations and cooperation to fail, but all countries can
still ‘produce’ in their own country. On the other hand, in peace negotiations in a
situation of war, it can be that there is a nullifying player whose entrance implies
failure of the peace negotiations resulting in destructive warfare.

Formally, for (N, v) ∈ GN
nz and h ∈ N, we denote by (N, vh) the game in which

player h becomes a separator: For every S ⊆ N,

vh(S) =

∑j∈S v({j}) if h ∈ S,

v(S) otherwise.

For S = {i1, i2, . . . , is} ⊆ N, consider the sequence (vi1 , (vi1)i2 , . . . , (((vi1)i2)···is−1)is).
Note that (vi)j = (vj)i for every pair i, j ∈ N, so that (N, vS), with vS = (((vi1)i2)···is−1)is

in the sequence above, is well-defined for every coalition S ⊆ N, and does not de-
pend on the order in which the players become separators. Specifically, (N, vN) is
the corresponding additive game of (N, v) such that vN(S) = ∑j∈S v({j}) for all
S ⊆ N.

There exist several axioms which evaluate the consequences of such operation
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that a player takes as special role in TU-games; we refer to balanced contributions
in Myerson (1980), the veto equal loss property in van den Brink and Funaki (2009),
the nullified equal loss property in Ferrières (2017), Kongo (2018), and Kongo (2020),
and proportional balanced contributions under dummification in Béal et al. (2018).
Similarly, we will introduce two new axioms concerning the separatorization.

5.4.1 Proportional loss under separatorization

The first new axiom is proportional loss under separatorization, which states that, if a
player becomes a separator, then any two other players are affected proportionally
to their stand-alone worths. Obviously, this axiom is considered only for games with
at least three players.

• Proportional loss under separatorization. For all (N, v) ∈ G≥3
nz , all h ∈ N, and

all i, j ∈ N\{h}, it holds that

ψi(N, v)− ψi(N, vh)

v({i}) =
ψj(N, v)− ψj(N, vh)

v({j}) .

Note that (N, vh) ∈ G≥3
nz for all (N, v) ∈ G≥3

nz and h ∈ N, since the stand-alone
worths do not change when a player becomes a separator. We begin the axiomatic
study by uncovering two useful properties implied by the combination of efficiency
and proportional loss under separatorization.

The first property says that under these two axioms, if two values coincide on
the class of additive games, then they coincide on the class of all games in G≥3

nz .

Lemma 5.1. Consider two values ψ and ϕ satisfying efficiency and proportional loss under
separatorization on G≥3

nz such that ψ = ϕ on A≥3
nz . Then ψ = ϕ on G≥3

nz .

The proof of this lemma and of all other results in this chapter can be found in
Section 5.7.

The second property follows from Lemma 5.1 and describes a relation between
the payoffs of any game in GN

nz and the game where all players become separators.

Lemma 5.2. If a value ψ on G≥3
nz satisfies efficiency and proportional loss under separator-

ization, then

ψi(N, v)− ψi(N, vN) =
v({i})

∑j∈N v({j})v(N)− v({i}) (5.3)

for all (N, v) ∈ G≥3
nz and i ∈ N.

Remark 5.1. The term v({i})
∑j∈N v({j})v(N) in (5.3) causes that any value satisfying effi-

ciency and proportional loss under separatorization is not linear. As a consequence,
there is no value on G≥3

nz that satisfies efficiency, proportional loss under separator-
ization, and linearity.
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Remark 5.2. The converse of Lemma 5.2 does not hold since a value with the form
of (5.3) need not satisfy efficiency as can be illustrated by the value ϕ = PD + a,
where a ∈ RN is such that ∑i∈N ai 6= 0, which also satisfies (5.3) but not efficiency.
However, every value of the form given in (5.3) satisfies proportional loss under
separatorization, which follows since applying (5.3) to (N, vh), h ∈ N, and using
the fact that vh(N) = ∑j∈N v({j}), we have ψi(N, vh) − ψi(N, vN) = 0 for i ∈ N.

Subtracting this equality from (5.3) yields ψi(N, v) − ψi(N, vh) = v({i})
∑j∈N v({j})v(N) −

v({i}), as desired.

The following theorem characterizes a family of values on a restrictive domain
of quasi-additive games.

Theorem 5.1. A value ψ on QA≥3
nz satisfies efficiency, anonymity, weak no advantageous

reallocation, and continuity if and only if there exists a continuous function g : R\{0} ×
R→ R such that

ψi(N, v) =
v({i})

∑j∈N v({j})v(N)−
(

v({i})
∑j∈N v({j}) −

1
n

)
g(∑

j∈N
v({j}), v(N)) (5.4)

for all (N, v) ∈ QA≥3
nz and i ∈ N.

Remark 5.3. Chun (1988) shows a similar result (Theorem 1) for the situation that
the sum of all stand-alone worths is nonzero. If continuity in Theorem 5.1 is replaced
by the weaker condition that ψ is continuous at least at one point of its domain, then
it affects only the properties of g which is no longer required to be continuous, but
does not affect (5.4); we refer to Remark 1 in Chun (1988).

The ED, ESD, PD, and EPSD values restricted to the subclass of quasi-additive
games are members of the family characterized by Theorem 5.1. They are obtained
by setting g(∑j∈N v({j}), v(N)) equal to v(N), v(N)−∑j∈N v({j}), 0, and ∑j∈N v({j}),
respectively.

Among the values characterized in Theorem 5.1, only the affine combinations of
the PD and EPSD values satisfy proportional loss under separatorization and weak
linearity. This result still holds even if the domain QA≥3

nz is extended to the domain
G≥3

nz .

Theorem 5.2. A value ψ on G≥3
nz satisfies efficiency, anonymity, weak no advantageous

reallocation, proportional loss under separatorization, and weak linearity if and only if there
is α ∈ R such that ψ = αEPSD + (1− α)PD.

A subfamily of affine combinations of the PD value and the EPSD value on GN
nz

is characterized by imposing superadditive monotonicity (see Page 16) on G≥3
nz .

Theorem 5.3. A value ψ on G≥3
nz satisfies efficiency, anonymity, weak no advantageous re-

allocation, proportional loss under separatorization, weak linearity, and superadditive mono-
tonicity if and only if there is α ∈ [0, n

n−1 ] such that ψ = αEPSD + (1− α)PD.
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Remark 5.4. Define the following modification of the EPSD value:

EPSD′i(N, v) =
1

n− 1 ∑
j∈N\{i}

v({j}) + v({i})
∑j∈N v({j}) [v(N)− ∑

j∈N
v({j})].

The difference between the EPSD value and EPSD′ is that in the latter one, each
player i ∈ N first gets the average stand-alone worth over all other players j ∈ N\{i}
instead of the average stand-alone worth over all players as in the EPSD value.
Then, the family of values characterized in Theorem 5.3 can also be expressed as
{α′EPSD′ + (1− α′)PD | α′ ∈ [0, 1]} with α′ = n−1

n α.

We identify the family of convex combinations of the PD value and the EPSD
value on GN

nz by using weak desirability instead of anonymity in Theorem 5.3.

Theorem 5.4. A value ψ on G≥3
nz satisfies efficiency, weak no advantageous reallocation,

proportional loss under separatorization, weak linearity, superadditive monotonicity, and
weak desirability if and only if there is α ∈ [0, 1] such that ψ = αEPSD + (1− α)PD.

The proof uses the following lemma, which reveals that weak desirability to-
gether with some of the axioms in Theorem 5.3 imply anonymity.

Lemma 5.3. On G≥3
nz , efficiency, weak no advantageous reallocation, proportional loss under

separatorization, and weak desirability imply anonymity.

5.4.2 Proportional balanced contributions under separatorization

Notice that in the results of Section 5.4.1, we had to exclude two-player games. The
reason is that proportional loss under separatorization compares the effect on the
payoffs of two distinct players by separatorization of yet another (third) player, and
thus involves three players. In contrast, we introduce proportional balanced contribu-
tions under separatorization which states that any two players are affected proportion-
ally to their stand-alone worths if the other becomes a separator.

• Proportional balanced contributions under separatorization. For all (N, v) ∈
GN

nz and all i, j ∈ N, it holds that

ψi(N, v)− ψi(N, vj)

v({i}) =
ψj(N, v)− ψj(N, vi)

v({j}) .

Since proportional balanced contributions under separatorization only compares
the effect on the payoffs of two players by mutually becoming a separator, and thus
involves only two players, it turns out that using this axiom instead of proportional
loss under separatorization, Lemma 5.1 and Lemma 5.2 can be stated also for two-
player games.

Lemma 5.4. Consider two values ψ and ϕ satisfying efficiency and proportional balanced
contributions under separatorization on GN

nz such that ψ = ϕ on AN
nz. Then ψ = ϕ on GN

nz.
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Lemma 5.5. If a value ψ on GN
nz satisfies efficiency and proportional balanced contributions

under separatorization, then

ψi(N, v)− ψi(N, vN) =
v({i})

∑j∈N v({j})v(N)− v({i})

for all (N, v) ∈ GN
nz and i ∈ N.

Comparing Lemma 5.2 and Lemma 5.5, efficiency together with either propor-
tional loss under separatorization or proportional balanced contributions under sep-
aratorization generate the family of values with the same formula. Thus, we may
adopt proportional balanced contributions under separatorization instead of pro-
portional loss under separatorization for Theorems 5.2, 5.3, and 5.4 given in Section
5.4.1.

Theorem 5.5. Let ψ be a value on G≥3
nz that satisfies efficiency, weak no advantageous re-

allocation, proportional balanced contributions under separatorization, and weak linearity.
Then,

(i) ψ satisfies anonymity if and only if there is α ∈ R such that ψ = αEPSD + (1−
α)PD.

(ii) ψ satisfies anonymity and superadditive monotonicity if and only if there is α ∈
[0, n

n−1 ] such that ψ = αEPSD + (1− α)PD.

(iii) ψ satisfies weak desirability and superadditive monotonicity if and only if there is
α ∈ [0, 1] such that ψ = αEPSD + (1− α)PD.

Remark 5.5. Although Lemmas 5.4 and 5.5 are valid also for two-player games, in
Theorem 5.5, the restriction |N| 6= 2 cannot be omitted. Specifically, if |N| = 2 then,
for example, the value defined by

ψi(N, v) =
v({i})

∑j∈N v({j})v(N)− v({i}) + (v({i}))2

∑j∈N(v({j}))2 ∑
j∈N

v({j}) (5.5)

satisfies all axioms, but it does not coincide with αEPSD + (1− α)PD for any α ∈ R.

Remark 5.6. In Theorems 5.2–5.5, weak no advantageous reallocation can be re-
placed by the following stronger axiom.

• Transfer rationality. For any additive games (N, v), (N, w) ∈ AN
nz such that

∑j∈N v({j}) = ∑j∈N w({j}), it holds that ψi(N, v) − ψi(N, w) = β[v({i}) −
w({i})] for some β ∈ R and all i ∈ N.

Transfer rationality states that an additive game is constructed from the initial addi-
tive game by transfering individual productivities across the players, then the dif-
ference in payoffs for any two players is proportional to the difference in their stand-
alone worths. In this way, the restriction |N| 6= 2 can be taken out in Theorem 5.5.
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5.5 Axiomatizations of the α-proportional surplus division
value

We now provide characterizations for specific values from the family of propor-
tional surplus division values. For this, we use a parametrized axiom, depending
on fixed α ∈ [0, 1], such that it singles out the corresponding value ϕα from the class
{αEPSD + (1− α)PD | α ∈ [0, 1]}.

The α-egalitarian inessential game property makes a trade-off between egalitarian-
ism (i.e. every palyer gains v(N)

n ) and egocentrism (i.e. player i gains her own stand-
alone worth v({i})) in additive games, by requiring that in such games a fraction α

of the worth of the grand coalition is allocated equally over the players, and the play-
ers additionally keep the complementary fraction (1− α) of their own stand-alone
worth.

• α-egalitarian inessential game property. Let α ∈ [0, 1]. For every additive
game (N, v) ∈ AN

nz and all i ∈ N, it holds that ψi(N, v) = (1− α)v({i})+ α v(N)
n .

When α = 0 this yields the well-known inessential game property, while α = 1
yields equal division for inessential games as introduced in Ferrières (2017). Further,
a higher (respectively lower) α reflects a more egalitarian (respectively egocentric)
society. Adding this axiom to the axioms of efficiency and proportional loss un-
der separatorization characterizes the corresponding proportional surplus division
value (except for two-player games).

Theorem 5.6. Let α ∈ [0, 1] and |N| 6= 2. A value ψ on GN
nz satisfies efficiency, proportional

loss under separatorization, and the α-egalitarian inessential game property if and only if
ψ = ϕα.

Next, we provide an alternative characterization of a specific proportional sur-
plus division value using another parameterized axiom. For α ∈ [0, 1], we call a
game α-essential if ∑i∈N αv({i}) ≤ v(N). Clearly, for α = 0 this boils down to
v(N) ≥ 0, while for α = 1 this is weak essentiality. The following axiom imposes
a lower bound on the payoffs of players in α-essential games between zero and the
average stand-alone worth. Specifically, it requires that each player receives at least
a fixed fraction α ∈ [0, 1] of the average stand-alone worth if it is feasible to do so.

• α-reasonable lower bound. Let α ∈ [0, 1]. For every α-essential game (N, v) ∈
GN

nz and all i ∈ N, ψi(N, v) ≥ α
n ∑j∈N v({j}).

We compare this axiom with a known lower bound axiom for α-essential games
which requires that in such games, every player earns at least a fraction α of its
stand-alone worth, see van den Brink et al. (2016).4

4Recall that α-individual rationality is used to characterize the convex combinations of the ED and
ESD values in van den Brink et al. (2016) and Xu et al. (2015).
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• α-individual rationality. Let α ∈ [0, 1]. For every α-essential game (N, v) ∈
GN

nz and all i ∈ N, ψi(N, v) ≥ αv({i}).

Notice that α-individual rationality relies on egocentrism and α-reasonable lower
bound rests on egalitarianism. In both cases, α can be seen as a social selfish coeffi-
cient balancing the preference between egalitarianism and egocentrism. For α = 0
both boil down to nonnegativity, requiring that ψi(N, v) ≥ 0 for all i ∈ N and ev-
ery game (N, v) ∈ GN

nz with v(N) ≥ 0. For α = 1, 1-individual rationality is the
usual individual rationality axiom requiring that in a weakly essential game every
player earns at least its stand-alone worth, while 1-reasonable lower bound guar-
antees every player at least the average stand-alone worth. It turns out that adding
α-reasonable lower bound to efficiency and proportional loss under separatorization
characterizes the corresponding ϕα, while adding α-individual rationality yields only
the PD value.

Theorem 5.7. Let α ∈ [0, 1] and |N| 6= 2. A value ψ on GN
nz satisfies efficiency, proportional

loss under separatorization, and α-reasonable lower bound if and only if ψ = ϕα.

Corollary 5.1. Let α ∈ [0, 1] and |N| 6= 2. A value ψ on GN
nz satisfies efficiency,

proportional loss under separatorization, and α-individual rationality if and only if
ψ = PD.

Remark 5.7. In the proof of Theorem 5.7, α-reasonable lower bound is only used to
determine a payoff vector of every game (N, v) ∈ GN

nz in which ∑i∈N αv({i}) =

v(N). Thus, it can be replaced with other similar axioms suitable for this task,
such as the Equal treatment for α-dummifying player axiom which requires that an α-
dummifying player (Xu et al., 2015) earns at least an equal share in the worth of the
grand coalition.

• Equal treatment for α-dummifying player. Let α ∈ [0, 1]. For all (N, v) ∈ GN
nz,

it holds that ψi(N, v) = v(N)
n , where player i ∈ N is an α-dummifying player in

(N, v): v(S) = α ∑j∈S v({j}) for all S ⊆ N such that i ∈ S and |S| ≥ 2.

Theorems 5.6 and 5.7 immediately imply axiomatic characterizations of the PD
value and the EPSD value by taking ϕα with α = 0, 1, respectively.

All characterization results in this subsection still hold by replacing proportional
loss under separatorization with proportional balanced contributions under separa-
torization. In this way, the restriction |N| 6= 2 can be taken out.

Remark 5.8. The difference between the PD value and the proportional Shapley
value is pinpointed to one axiom. With Theorem 5.6, it immediately follows that
the PD value is characterized by efficiency, proportional balanced contributions un-
der separatorization, and the inessential game property. Notice that as Theorem 1.14
shown, Béal et al. (2018) offer a characterization of the proportional Shapley value
on GN

nz by employing efficiency, proportional balanced contributions under dummi-
fication, and the inessential game property.
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5.6 Independence of axioms

Logical independence of the axioms used in the characterization results can be shown
by the following alternative values.

Theorem 5.2:

(i) The value ψ(N, v) = 0 for all (N, v) ∈ G≥3
nz satisfies all axioms except efficiency.

(ii) The value on G≥3
nz defined for all (N, v) ∈ G≥3

nz with N = {1, 2, ..., n} and i ∈ N,
by

ψi(N, v) =
v({i})

∑j∈N v({j})v(N)− v({i}) + i
∑j∈N j ∑

j∈N
v({j}) (5.6)

satisfies all axioms except anonymity.

(iii) The value defined by (5.5) satisfies all axioms except weak no advantageous
reallocation.

(iv) The ED value satisfies all axioms except proportional loss under separatoriza-
tion.

(v) The value on G≥3
nz defined for all (N, v) ∈ G≥3

nz and i ∈ N, by

ψi(N, v) =
v({i})

∑j∈N v({j})v(N)−
(

v({i})− 1
n ∑

j∈N
v({j})

)(
1
2

) ∑
j∈N

v({j})

satisfies all axioms except weak linearity.

Theorem 5.3 and Theorem 5.4:

(i) The value ψ(N, v) = 0 for all (N, v) ∈ G≥3
nz satisfies all axioms except efficiency.

(ii) The value defined by (5.5) satisfies all axioms except weak no advantageous
reallocation.

(iii) The value defined by (5.6) satisfies all axioms except anonymity and weak de-
sirability.

(iv) The ED value satisfies all axioms except proportional loss under separatoriza-
tion.

(v) The value on G≥3
nz defined for all (N, v) ∈ G≥3

nz and i ∈ N, by

ψi(N, v) =
v({i})

∑j∈N v({j})v(N)−
(

v({i})− 1
n ∑

j∈N
v({j})

)(
1
2

)| ∑
j∈N

v({j})|

satisfies all axioms except weak linearity.
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(vi) The value ψ(N, v) = 2EPSD(N, v)− PD(N, v) for all (N, v) ∈ G≥3
nz satisfies all

axioms of Theorem 5.4 except superadditive monotonicity.

Theorem 5.6:

(i) The value ψ(N, v) = αED(N, v) + (1− α)ESD(N, v) for all (N, v) ∈ GN
nz, satis-

fies all axioms except proportional loss under separatorization.

(ii) The value defined by (5.6) satisfies all axioms except the α-egalitarian inessen-
tial game property.

(iii) The value ψi(N, v) = (1− α)v({i}) + α
n ∑j∈N v({j}) for all (N, v) ∈ GN

nz and
i ∈ N, satisfies all axioms except efficiency.

Theorem 5.7:

(i) The ED value satisfies all axioms except proportional loss under separatoriza-
tion.

(ii) The value defined by (5.6) satisfies all axioms except α-reasonable lower bound.

(iii) The value ψi(N, v) = 1
n ∑j∈N v({j}) for all (N, v) ∈ GN

nz and i ∈ N, satisfies all
axioms except efficiency.

5.7 Proofs

Let us denote K(v) = ∑j∈N v({j}) for any (N, v) ∈ GN
nz. If no ambiguity is possible,

we use K instead of K(v).

Proof of Lemma 5.1. Suppose that (N, v) ∈ G≥3
nz . Denote D(N, v) = {i ∈ N |

i is a separator in (N, v)}. We proceed by induction on the decreasing cardinality
of the set D(N, v).

Initialization. For |D(N, v)| = |N|, i.e. all players are separators, (N, v) is an
additive game. Then ψ = ϕ by hypothesis. There is no game in which |D(N, v)| =
|N| − 1, because if |N| − 1 players are separators then the nth one is also a separator.
Therefore, ψ = ϕ holds for |D(N, v)| ≥ |N| − 1.

Induction hypothesis. Suppose that ψ(N, v) = ϕ(N, v) for all games (N, v) ∈ G≥3
nz

such that |D(N, v)| ≥ d, for 0 < d ≤ |N| − 1.

Induction step. Consider any game (N, v) ∈ G≥3
nz such that |D(N, v)| = d − 1.

Since d ≤ |N| − 1, and thus |N\D(N, v)| ≥ 2. Let h, l be two distinct players in
N\D(N, v). For any i, j ∈ N\{h}, by proportional loss under separatorization of ψ

and ϕ,

ψi(N, v)− ψi(N, vh)

v({i}) =
ψj(N, v)− ψj(N, vh)

v({j}) , (5.7)
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and

ϕi(N, v)− ϕi(N, vh)

v({i}) =
ϕj(N, v)− ϕj(N, vh)

v({j}) . (5.8)

Since h is a separator in (N, vh) and not a separator in (N, v), and D(N, v) ⊂
D(N, vh), then |D(N, vh)| ≥ |D(N, v)| + 1 = d 5. The induction hypothesis then
implies that

ψk(N, vh) = ϕk(N, vh), for all k ∈ N. (5.9)

Subtracting (5.8) from (5.7) and using (5.9) yields

ψi(N, v)− ϕi(N, v) =
v({i})
v({j}) [ψj(N, v)− ϕj(N, v)].

The above equality similarly holds for all i, j ∈ N\{l}. Since |N| ≥ 3, this equal-
ity holds for all i, j ∈ N. Then, summing this equality over i ∈ N and using efficiency,
we obtain

v(N)− v(N) =
∑i∈N v({i})

v({j}) [ψj(N, v)− ϕj(N, v)].

Since ∑i∈N v({i})
v({j}) 6= 0 for all (N, v) ∈ G≥3

nz , it immediately follows that ψj(N, v) =

ϕj(N, v) for all j ∈ N.

Proof of Lemma 5.2. Let ψ be a value on G≥3
nz satisfying efficiency and proportional

loss under separatorization. We first present two claims on ψ.

Claim 5.1. For any h ∈ N, i ∈ N\{h} and any nonempty S ⊆ N\{i, h},

ψi(N, v)− ψi(N, vh) = v({i})
K−v({h}) [v(N)− ψh(N, v)− vh(N) + ψh(N, vh)], (5.10)

ψi(N, vS)− ψi(N, vS∪{h}) = v({i})
K−v({h}) [−ψh(N, vS) + ψh(N, vS∪{h})]. (5.11)

Proof. Let (N, v) ∈ GN
nz, h ∈ N and i, j ∈ N\{h}. By proportional loss under separa-

torization, we have

ψj(N, v)− ψj(N, vh) =
v({j})
v({i}) [ψi(N, v)− ψi(N, vh)].

Summing this equality over j ∈ N\{h} and using efficiency, we have

v(N)− ψh(N, v)− [vh(N)− ψh(N, vh)] =
∑j∈N\{h} v({j})

v({i}) [ψi(N, v)− ψi(N, vh)],

which implies (5.10).

5The inequality holds since making a player who was not a separator into a separator, may cause
other players to lose their status.
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Pick any nonempty S ⊆ N, and consider (N, vS) ∈ G≥3
nz . Since vS(N) = ∑k∈N v({k}) =

K and vS({k}) = v({k}) for all k ∈ N, then (5.11) is implied by (5.10) applied to
(N, vS).

Claim 5.2. For all S ⊆ N with 1 ≤ |S| ≤ n− 1, ψ(N, vS) = ψ(N, vN).

Proof. The assertion is obtained by induction on the number of separators, again in
decreasing order.

Initialization. Since (N, vN\{h}) = (N, vN) for any h ∈ N, we conclude that
ψ(N, vS) = ψ(N, vN) for all S ⊆ N with |S| = n− 1,

Induction hypothesis. Assume that ψ(N, vT) = ψ(N, vN) holds for all T ⊆ N with
|T| = t, for some 2 ≤ t ≤ n− 1.

Induction step. Consider (N, vS) ∈ G≥3
nz and S ( N such that |S| = t − 1. Take

j ∈ N\S and i ∈ N\(S ∪ {j}) (It is possible since |S| ≤ n− 2). We have

ψi(N, vS)− ψi(N, vS∪{j})

=
v({i})

∑k∈N\{j} v({k}) [−ψj(N, vS) + ψj(N, vS∪{j})]

=
v({i})

∑k∈N\{j} v({k}) [−ψj(N, vS) + ψj(N, vN)]

=
v({i})

∑k∈N\{j} v({k}) [−ψj(N, vS) + ψj(N, vS∪{i})]

=
v({i})

∑k∈N\{j} v({k})
[ v({j})

∑k∈N\{i} v({k}) [ψi(N, vS)− ψi(N, vS∪{i})]
]

=
v({i})v({j})

∑k∈N\{j} v({k})∑k∈N\{i} v({k}) [ψi(N, vS)− ψi(N, vS∪{j})],

where the first and fourth equalities hold from (5.11), and the other three equalities
hold by the induction hypothesis.

Since in general v({i})v({j})
∑k∈N\{j} v({k})∑k∈N\{i} v({k}) 6= 1, we have ψi(N, vS) = ψi(N, vS∪{j})

for all i ∈ N\(S ∪ {j}). For any k ∈ S, again by proportional loss under separator-
ization, we have ψk(N,vS)−ψk(N,vS∪{j})

v({k}) = ψi(N,vS)−ψi(N,vS∪{j})
v({i}) , which yields ψk(N, vS) =

ψk(N, vS∪{j}). Efficiency then implies that ψj(N, vS) = ψj(N, vS∪{j}). Since there ex-

ists such a j for all S ( N, we conclude that ψ(N, vS) = ψ(N, vS∪{j})
IH
= ψ(N, vN).

Based on Claims 5.1 and 5.2, we prove Lemma 5.2 as follows.

Proof of Lemma 5.2. For any i ∈ N and j ∈ N\{i}, Claim 5.2 together with (5.10)
imply that

ψi(N, v)− ψi(N, vN)

=
v({i})

∑k∈N\{j} v({k}) [v(N)− vN(N)− ψj(N, v) + ψj(N, vN)],
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which can be rewritten as:

[K− v({j})][ψi(N, v)− ψi(N, vN)]

= v({i})[v(N)− vN(N)− (ψj(N, v)− ψj(N, vN))].

Summing the above equality over j ∈ N\{i} yields

[(n− 1)K− ∑
j∈N\{i}

v({j})][ψi(N, v)− ψi(N, vN)]

= v({i})
[
(n− 1)[v(N)− vN(N)]− ∑

j∈N\{i}
(ψj(N, v)− ψj(N, vN))

]
.

Using ∑j∈N\{i}(ψj(N, v)−ψj(N, vN)) = v(N)−ψi(N, v)− vN(N)+ψi(N, vN), which
follows from efficiency, we have

[(n− 2)K + v({i})][ψi(N, v)− ψi(N, vN)]

= v({i})
[
(n− 2)[v(N)− vN(N)] + [ψi(N, v)− ψi(N, vN)]

]
.

Since n− 2 6= 0, it follows that

K[ψi(N, v)− ψi(N, vN)] = v({i})[v(N)− vN(N)],

as desired.

Proof of Theorem 5.1. It can easily be checked that any value of the form given in
(5.4) satisfies the four axioms on QA≥3

nz . To prove the ‘only if’ part, let ψ be a value
onQA≥3

nz satisfying the four axioms. Let (N, v) ∈ QA≥3
nz and let i, j ∈ N be two fixed

players. Without loss of generality, we assume that (N, v) is individually positive.
Let ε ∈ R+ be any number such that 0 < ε < mini∈N{v({i})}. (The proof can be
similarly written for the class of individually negative games, and then g should be
a function R− ×R→ R.)

First, we consider the following quasi-additive games vt(t = 1, 2, ..., 7) such that
the worth of the grand coalition v(N) and the sum of all stand-alone worths K are
identical to those of (N, v).

(i) Consider the game (N, v1) ∈ QA≥3
nz defined by v1({i}) = v({i}) + v({j})− ε,

v1({j}) = ε, v1({k}) = v({k}) for all k ∈ N\{i, j} and v1(N) = v(N). This
involves a transfer from j to i. By weak no advantageous reallocation, we have

ψi(N, v) + ψj(N, v) = ψi(N, v1) + ψj(N, v1). (5.12)

(ii) Consider the game (N, v2) ∈ QA≥3
nz defined by v2({i}) = v({i}), v2({j}) =

K − v({i}) − (n − 2)ε, v2({k}) = ε for all k ∈ N\{i, j}, and v2(N) = v(N).
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This involves a transfer from the players in N\{i, j} to player j. By weak no
advantageous reallocation applied to (N, v) and (N, v2), we obtain

∑
k∈N\{i}

ψk(N, v) = ∑
k∈N\{i}

ψk(N, v2).

Efficiency then implies
ψi(N, v) = ψi(N, v2). (5.13)

(iii) Consider the game (N, v3) ∈ QA≥3
nz defined by v3({i}) = v({j}), v3({j}) =

K− v({j})− (n− 2)ε, v3({k}) = ε for all k ∈ N\{i, j}, and v3(N) = v(N). This
game is obtained by first switching roles between i and j in game (N, v) and
then making a transfer similar to the one in case (ii). Let π be a permutation
such that π(i) = j, π(j) = i, and π(k) = k for all k ∈ N\{i, j}.

Define the game (N, v4) ∈ QA≥3
nz by v4({i}) = K− v({j})− (n− 2)ε, v4({j}) =

v({j}), v4({k}) = ε for all k ∈ N\{i, j}, and v4(N) = v(N). By weak no advan-
tageous reallocation applied to (N, v) and (N, v4), we obtain ∑k∈N\{j} ψk(N, v) =

∑k∈N\{j} ψk(N, v4). Efficiency then implies ψj(N, v) = ψj(N, v4). Notice that
(N, v4) = (N, πv3). By anonymity, ψj(N, v4) = ψπ(i)(N, πv3) = ψi(N, v3).
Therefore,

ψj(N, v) = ψi(N, v3). (5.14)

(iv) Consider the game (N, v5) ∈ QA≥3
nz defined by v5({i}) = v({i}) + v({j})− ε,

v5({j}) = K− v({i})− v({j})− (n− 3)ε, v5({k}) = ε for all k ∈ N\{i, j}, and
v′ij(N) = v(N). This involves a transfer from the players in N\{i, j} to player j
given game (N, v1). By weak no advantageous reallocation applied to (N, v1)

and (N, v5), we obtain ∑k∈N\{i} ψk(N, v1) = ∑k∈N\{i} ψk(N, v5). Efficiency then
implies

ψi(N, v1) = ψi(N, v5). (5.15)

(v) Consider the game (N, v6) ∈ QAN
nz defined by v6({j}) = K− (n− 1)ε, v6({k}) =

ε for all k ∈ N\{j}, and v6(N) = v(N). This involves a transfer from i to j
given game (N, v5). Let (N, v7) ∈ QA≥3

nz be the game defined by v7({i}) =

K − (n − 1)ε, v7({k}) = ε for all k ∈ N\{i}, and v7(N) = v(N). Clearly,
(N, v7) = (N, πv6) for the permutation such that π(i) = j, π(j) = i, and
π(k) = k for all k ∈ N\{i, j}. By anonymity, we obtain ψi(N, v6) = ψj(N, v7).
On the other hand, applying weak no advantageous reallocation to (N, v7) and
(N, v1), and then using efficiency, we obtain ψj(N, v7) = ψj(N, v1). Therefore,

ψj(N, v1) = ψi(N, v6). (5.16)
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Next, based on (5.12)-(5.16), we derive the formula of ψi(N, v). Substituting
(5.13)-(5.16) into (5.12), we have

ψi(N, v2) + ψi(N, v3) = ψi(N, v5) + ψi(N, v6). (5.17)

Each game used in (5.17) is uniquely determined by four parameters: the worth
of {i}, the number ε (which determines the stand-alone worths of players k ∈ N\{i, j}),
the sum of stand-alone worths K (which, with ε, determines the stand-alone worth
of j), and the worth of the grand coalition v(N). For such game (N, v0), given
ε, K, v(N), let F(v0({i})) = ψi(N, v0). Clearly,

ψi(N, v2) = F(v({i})),

ψi(N, v3) = F(v({j})),

ψi(N, v5) = F(v({i}) + v({j})− ε),

ψi(N, v6) = F(ε).

(5.18)

Here, only v({i}) and v({j}) are variables, and (v({k}))k∈N\{i,j}, ε, K, v(N) are con-
stants.

Since we can take any worth v({i}) > 0 for given ε, K, v(N), we consider F(v0({i}))
to be a function on R+. For x− ε > 0, we define a funcion f : {x ∈ R+|x > ε} → R

by

f (c− ε) = F(c)− F(ε). (5.19)

Note that (5.17) can be rewritten as

ψi(N, v2)− ψi(N, v6) + ψi(N, v3)− ψi(N, v6) = ψi(N, v5)− ψi(N, v6).

Taking (5.18) and (5.19) into account, we can then write

[
F(v({i}))− F(ε)

]
+
[
F(v({j}))− F(ε)

]
= F(v({i}) + v({j})− ε)− F(ε),

which is equivalent to

f (v({i})− ε) + f (v({j})− ε) = f (v({i}) + v({j})− 2ε)

Here note that only v({i}) and v({j}) are variables. Since v({i}) + v({j}) − 2ε =

[v({i})− ε] + [v({j})− ε], f is additive. By continuity of ψ, f is continuous. There-
fore, applying Theorem 2 on the conditional Cauchy equation of Aczél and Erdős
(1965) to f , and then using Corollary 3.1.9, p.51, of Eichhorn (1978) on Cauchy’s
equation, yield that there exists a constant f0 such that

f (c− ε) = (c− ε) f0. (5.20)
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Substituting (5.20) into (5.19) and taking c = v({i}), it follows that

(v({i})− ε) f0 = F(v({i}))− F(ε).

We obtain

ψi(N, v) = ψi(N, v2)

= F(v({i}))
= f (v({i})− ε) + F(ε)

= (v({i})− ε) f0 + F(ε). (5.21)

where the first equality follows from (5.13), the second from (5.18), the third from
(5.19), and the last from (5.20).

Note that (5.21) holds for all i ∈ N. Summing up these equations over all i ∈ N
and using efficiency, we obtain

v(N) = (K− nε) f0 + nF(ε).

It follows that
F(ε) =

v(N)

n
− K

n
f0 + ε f0.

The above equation and (5.21) yield

ψi(N, v) = v({i}) f0 +
v(N)

n
− K

n
f0. (5.22)

This equation was obtained for any fixed ε. Then f0 might depend on ε. We show
that f0 is independent of ε.

Take any two positive numbers ε1, ε2 < mini∈N{v({i})}. Suppose f0 depends
on ε and denote f0(ε1) and f0(ε2), respectively. (5.22) yields v({i}) f0(ε1) +

v(N)
n −

K
n f0(ε1) = ψi(N, v) = v({i}) f0(ε2)+

v(N)
n −

K
n f0(ε2), and thus it must be that (v({i})−

K
n )( f0(ε1)− f0(ε2) = 0. It is possible to take v({i}) with v({i})− K

n 6= 0, and thus
f0(ε1) = f0(ε2). Hence, if v({i})− K

n 6= 0 then f0(ε1) = f0(ε2); otherwise, continuity
also implies f0(ε1) = f0(ε2). This means that the number f0 does not depend on ε.

This argument depends on the choices of K and v(N). Hence we denote f0 =

f0(K, v(N)). Then we consider a function g : R+×R→ R defined by f0(K, v(N)) =
v(N)

K − 1
K g(K, v(N)). Using this function, (5.22) can be rewritten as

ψi(N, v) =
v({i})v(N)

K
− v({i})

K
g(K, v(N)) +

v(N)

|N| −
Kv(N)

nK
+

Kg(K, v(N))

nK

=
v({i})

K
v(N)−

(
v({i})

K
− 1

n

)
g(K, v(N)),

as desired.
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Proof of Theorem 5.2. Since it is obvious that ψα = αEPSD + (1− α)PD, α ∈ R,
satisfies efficiency, anonymity, and weak linearity, we only show that ψ satisfies pro-
portional loss under separatorization and weak no advantageous reallocation. For
any (N, v) ∈ G≥3

nz , h ∈ N and i ∈ N\{h}, using (5.1) and the definition of (N, vh), we
have

ϕα
i (N, vh) =

α

n ∑
j∈N

vh({j}) + vh({i})
∑j∈N vh({j}) [v

h(N)− ∑
j∈N

αvh({j})]

=
α

n
K(v) +

v({i})
K(v)

[K(v)− αK(v)].

Subtracting the above equation from (5.1) for the game (N, v), we have

ϕα
i (N, v)− ϕα

i (N, vh) =
v({i})
K(v)

[v(N)− K(v)].

It follows that

ϕα
i (N, v)− ϕα

i (N, vh)

v({i}) =
1

K(v)
[v(N)− K(v)],

which shows that proportional loss under separatorization is satisfied.

To show that ϕα satisfies weak no advantageous reallocation, let (N, v), (N, w) ∈
QA≥3

nz and T ⊆ N be such that v(N) = w(N), ∑i∈T v({i}) = ∑i∈T w({i}) and
v({i}) = w({i}) for all i ∈ N\T. Clearly, K(v) = K(w). Then, using (5.1),

∑
i∈T

ϕα
i (N, v) = ∑

i∈T

[α

n
K(v) +

v({i})
K(v)

[v(N)− αK(v)]
]

=
αt
n

K(v) + ∑i∈T v({i})
K(v)

[v(N)− αK(v)]

=
αt
n

K(w) +
∑i∈T w({i})

K(w)
[w(N)− αK(w)]

= ∑
i∈T

ϕα
i (N, w),

which shows that weak no advantageous reallocation is satisfied.

It remains to prove the ‘only if’ part. Let ψ be a value on G≥3
nz that satisfies the

five axioms.

First, consider any game (N, v) ∈ QA≥3
nz and (N, vN) ∈ A≥3

nz . From Lemma 5.2,

ψi(N, v)− ψi(N, vN) =
v({i})

K
v(N)− v({i}) for all i ∈ N. (5.23)

Since (N, vN) is an additive game, ψi(N, vN) can be seen as a function of the
stand-alone worths v({i}), i ∈ N. Moreover, since the right-hand side of (5.23) only
has the terms of v(S) with |S| = 1, n, we obtain from (5.23) that ψi(N, v) has the
term v({i})

K v(N), but no terms of v(S), where S ⊆ N with 1 < |S| < n. This implies
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that ψi(N, v) does not depend on v(S), S ⊆ N, 1 < |S| < n, and is continuous with
respect to v(N). Hence, from Remark 5.3 and Theorem 5.1, ψi(N, v) and ψi(N, vN)

have the form of (5.4). Substituting them into (5.23), we obtain for every i ∈ N,

ψi(N, v)− ψi(N, vN)− v({i})
K

v(N) + v({i})

=
v({i})v(N)

K
−
(

v({i})
K
− 1

n

)
g(K, v(N))− v({i})vN(N)

K

+

(
v({i})

K
− 1

n

)
g(K, vN(N))− v({i})v(N)

K
+ v({i})

= −
(

v({i})
K
− 1

n

)
(g(K, v(N))− g(K, vN(N)))

= 0, (5.24)

where in the second equality we use vN(N) = K, and the last equality follows from
(5.23).

To obtain the formula of ψi(N, v), (N, v) ∈ QA≥3
nz , we consider two cases:

(i) Suppose that (N, v) ∈ QAN
nz is such that v({i}) 6= v({j}) for some i, j ∈ N.

It must be that v({h})
K 6= 1

n for some h ∈ N. Then, from (5.24) we obtain
g(K, v(N)) = g(K, vN(N)). This means that g : R\{0} × R → R is a con-
stant function with respect to its second argument for each K since vN(N) = K.
Let f : R\{0} → R be such that f (x) = g(x, y) for all x ∈ R\{0} and y ∈ R.
Then (5.4) can be written as

ψi(N, v) =
v({i})v(N)

K
−
(

v({i})
K
− 1

n

)
f (K). (5.25)

Consider any (N, v), (N, w) ∈ QA≥3
nz and a ∈ R such that (N, av + w) ∈ QA≥3

nz

and there exists c ∈ R with w({i}) = cv({i}) for all i ∈ N. By weak linearity,
ψi(N, av+w) = aψi(N, v) +ψi(N, w) for all i ∈ N. Using (5.25), this yields that
f (K(av+w)) = a f (K(v)) + f (K(w)), which implies that f satisfies linearity on
R\{0}. Hence, f (K) = αK, where α is an arbitrary constant. Therefore, using
(5.25), we have

ψi(N, v) =
v({i})v(N)

K
−
(

v({i})
K
− 1

n

)
αK

=
v({i})v(N)

K
− αv({i}) + 1

n
αK

=
1
n ∑

j∈N
αv({j}) + v({i})

K
[v(N)− ∑

j∈N
αv({j})],

which equals to Formule (5.1) of ϕα(N, v).

(ii) Suppose that (N, v) ∈ QA≥3
nz is such that v({i}) = v({j}) for all i, j ∈ N. Then,

by (5.4) we have ψi(N, v) = v(N)
n , which also satisfies (5.1).



128 Chapter 5. Sharing the Surplus and Proportional Values

Second, consider any game (N, v) ∈ G≥3
nz . Since (N, vN) is an additive game, by

(5.1) applied to (N, vN), we have ψi(N, vN) = α
n K+ v({i})

K (K− αK) = α
n ∑j∈N v({j})+

(1− α)v({i}). Substituting this equation into (5.3) from Lemma 5.2, we obtain ψi(N, v) =
ψi(N, vN) + v({i})

K v(N)− v({i}) = α
n K + (1− α)v({i}) + v({i})

K v(N)− v({i}), which
coincides with (5.2), and thus ψ(N, v) = αEPSD(N, v) + (1− α)PD(N, v). Then by
Lemma 5.1, this value is uniquely determined.

Proof of Theorem 5.3. For the ‘if’ part, we already know that ϕα = αEPSD + (1−
α)PD satisfies efficiency, anonymity, weak no advantageous reallocation, propor-
tional loss under separatorization, and weak linearity. We show that ϕα also satisfies
superadditive monotonicity if α ∈ [0, n

n−1 ]. Let (N, v) ∈ G≥3
nz be an arbitrary superad-

ditive and monotone game. Since v(N) ≥ ∑j∈N v({j}), by (5.2) we have ψi(N, v) ≥
α
n ∑j∈N v({j}) + (1− α)v({i}) > α

n v({i}) + (1− α)v({i}) =
(
1− n−1

n α
)

v({i}) ≥ 0.
Hence, ψ satisfies superadditive monotonicity.

It remains to prove the ‘only if’ part. Let ψ be a value on G≥3
nz satisfying the six

axioms. From Theorem 5.2, there exists α ∈ R such that ψ = αEPSD + (1− α)PD.
We must show that α belongs to [0, n

n−1 ]. Suppose, by contradiction, that α 6∈ [0, n
n−1 ].

We distinguish the following two cases.

(i) Suppose that α < 0. Consider an additive game (N, v) ∈ A≥3
nz , where v({i}) =

1 and v({j}) = 1 − α
n−1 −

n
(n−1)α for all j ∈ N\{i}. Clearly, this game is

superadditive and monotone since α
n−1 + n

(n−1)α = α2+n
(n−1)α < 0. By Theo-

rem 5.2 and (N, v) being additive, ψi(N, v) = α
n ∑j∈N v({j}) + (1− α)v({i}) =

α
n (1 + (n− 1)− α− n

α ) + 1− α = α+(n−1)α−α2

n − 1 + 1− α = − α2

n < 0, which
contradicts superadditive monotonicity.

(ii) Suppose that α > n
n−1 . Consider an additive game (N, v) ∈ A≥3

nz such that
v({i}) = 1 + 2n

(n−1)α−n and v({j}) = 1 for all j ∈ N\{i}. Also this game is
superadditive and monotone. In this case, ψi(N, v) = α

n (n + 2n
(n−1)α−n ) + (1−

α)(1+ 2n
(n−1)α−n ) = α + 2α

(n−1)α−n + 1− α + 2n(1−α)
(n−1)α−n = 1+ 2α+2n(1−α)

(n−1)α−n = −1 < 0,
which contradicts superadditive monotonicity.

Proof of Theorem 5.4. It is easy to check that ψ = αEPSD + (1− α)PD, α ∈ [0, 1],
satisfies the six axioms. For the uniqueness, Theorem 5.3 and Lemma 5.3 imply that
we have to show α ≤ 1, which follows immediately from (5.2) and weak desirability.

Proof of Lemma 5.3. Let ψ be a value on G≥3
nz satisfying efficiency, proportional loss

under separatorization, weak no advantageous reallocation, and weak desirability.
Let π be a permutation on N. First, consider any two games (N, v), (N, w) ∈ A≥3

nz

such that (N, w) = (N, πv). Without loss of generality, we assume that (N, v) is
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individually positive. We distinguish the following three cases with respect to the
players:

(i) π(i) = i. In this case, v({i}) = w({i}) and ∑k∈N\{i} v({k}) = ∑k∈N\{i} w({k}).
By weak no advantageous reallocation, ∑k∈N\{i} ψk(N, v) = ∑k∈N\{i} ψk(N, w).
Efficiency then implies that ψi(N, v) = ψi(N, w) = ψπ(i)(N, πv).

(ii) π(i) 6= i and v({i}) < K
2 . We consider a game (N, v′) ∈ A≥3

nz such that v′({i}) =
v′({j}) = v({i}) and ∑k∈N\{i,j} v′({k}) = K − 2v({i}), where j = π(i). By
weak no advantageous reallocation applied to (N, v), (N, v′) and N\{i}, we
have ∑k∈N\{i} ψk(N, v) = ∑k∈N\{i} ψk(N, v′). This together with efficiency im-
ply that ψi(N, v) = ψi(N, v′). On the other hand, by weak no advantageous re-
allocation applied to (N, w), (N, v′) and N\{j}, we have ∑k∈N\{j} ψk(N, w) =

∑k∈N\{j} ψk(N, v′). Efficiency then implies that ψj(N, w) = ψj(N, v′). More-
over, since v′(S ∪ {i}) = v′(S ∪ {j}) for all S ⊆ N\{i, j}, weak desirability im-
plies that ψi(N, v′) = ψj(N, v′). Therefore, ψi(N, v) = ψj(N, w) = ψπ(i)(N, πv).

(iii) π(i) 6= i and v({i}) ≥ K
2 . Since |N| ≥ 3, there exists at most one such

player. Applying cases (i) and (ii) to all other players j ∈ N\{i}, we have
that ψj(N, v) = ψπ(j)(N, πv) for all j ∈ N\{i}. Efficiency then implies that
ψi(N, v) = ψπ(i)(N, πv).

The above three cases show that if a value ψ on A≥3
nz satisfies efficiency, weak no

advantageous reallocation, and weak desirability, then it also satisfies anonymity.
From Lemma 5.2, efficiency and proportional loss under separatorization together
imply (5.3), and thus ψi(N, v) = ψi(N, vN) + v({i})

K v(N)− v({i}) = ψπ(i)(N, πvN) +
πv({π(i)})

K πv(N)− πv({π(i)}) = ψπ(i)(N, πv) since πvN = (πv)N . Thus, ψ satisfies
anonymity on G≥3

nz .

Proof of Lemma 5.4. It is easy to check that the assertion holds for |N| = 2. For
|N| ≥ 3, the proof is similar to the proof of Lemma 5.1 except the induction step,
which now is as follows.

Induction step. Consider any game (N, v) ∈ GN
nz such that |D(N, v)| = d − 1.

Since d < n− 1, then |N\D(N, v)| ≥ 2.

First, consider any i ∈ N\D(N, v) and any j ∈ D(N, v). Obviously, |D(N, vi)| ≥
|D(N, v)|+ 1 = d and (N, v) = (N, vj). Proportional balanced contributions under
separatorization and the induction hypothesis imply that

ψj(N, v) = ψj(N, vi) +
v({j})
v({i}) [ψi(N, v)− ψi(N, vj)]

= ψj(N, vi)

= ϕj(N, vi)

= ϕj(N, vi) +
v({j})
v({i}) [ϕi(N, v)− ϕi(N, vj)]
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= ϕj(N, v), (5.26)

where the first and the last equalities follow from proportional balanced contribu-
tions under separatorization, and the third equality holds by the induction hypoth-
esis.

Next consider two distinct players i, k ∈ N\D(N, v). Again, proportional bal-
anced contributions under separatorization and the induction hypothesis imply that

ψk(N, v) = ψk(N, vi) +
v({k})
v({i}) [ψi(N, v)− ψi(N, vk)]

= ϕk(N, vi) +
v({k})
v({i}) [ψi(N, v)− ϕi(N, vk)]

= ϕk(N, v) +
v({k})
v({i}) [ψi(N, v)− ϕi(N, v)],

where again the first and the last equalities follow from proportional balanced con-
tributions under separatorization, and the second equality holds by the induction
hypothesis.

Thus

ψk(N, v)− ϕk(N, v) =
v({k})
v({i}) [ψi(N, v)− ϕi(N, v)].

Summing the above equality over k ∈ N\D(N, v) and then using efficiency, we
obtain that

∑
k∈N\D(N,v)

(ψk(N, v)− ϕk(N, v)) = ∑
k∈N\D(N,v)

(
v({k})
v({i}) [ψi(N, v)− ϕi(N, v)]

)
⇔

v(N)− ∑
j∈D(N,v)

ψj(N, v)− v(N) + ∑
j∈D(N,v)

ϕj(N, v)

= ∑
k∈N\D(N,v)

(
v({k})
v({i}) [ψi(N, v)− ϕi(N, v)]

)
⇔

0 =
ψi(N, v)− ϕi(N, v)

v({i}) ∑
k∈N\D(N,v)

v({k}),

where the second equivalence follows from (5.26). Thus, since v({k}) 6= 0 for all
k ∈ N, ψi(N, v) = ϕi(N, v) for any i ∈ N\D(N, v).

Proof of Lemma 5.5. Let ψ be a value on GN
nz satisfying the two axioms. For any

(N, v) ∈ GN
nz and any i, j ∈ N, by proportional balanced contributions under sepa-

ratorization, we have ψj(N, v)− ψj(N, vi) = v({j})
v({i}) [ψi(N, v)− ψi(N, vj)]. Summing
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this equality over j ∈ N\{i} and using efficiency, we have

v(N)− ψi(N, v)− [vi(N)− ψi(N, vi)]

=
∑j∈N\{i} v({j})

v({i}) ψi(N, v)− 1
v({i}) ∑

j∈N\{i}
v({j})ψi(N, vj).

It follows that

ψi(N, v)
(

K
v({i})

)
= v(N)− vi(N) + ψi(N, vi) +

1
v({i}) ∑

j∈N\{i}
v({j})ψi(N, vj),

and thus
ψi(N, v) =

v({i})
K

[v(N)− vi(N)] + ∑
j∈N

v({j})
K

ψi(N, vj). (5.27)

Next, we show that ψ(N, vS) = ψ(N, vN) for all S ⊆ N with 1 ≤ |S| ≤ n− 1. We
use an induction on the number of separators.

Initialization. Since (N, vN\{h}) = (N, vN) for all h ∈ N, then ψ(N, vS) = ψ(N, vN)

for all S ⊆ N with |S| = n− 1.

Induction hypothesis. Assume that ψ(N, vT) = ψ(N, vN) holds for all T ⊆ N with
|T| = t for some 2 ≤ t ≤ n− 1.

Induction step. Consider (N, vS) ∈ GN and S ( N such that |S| = t − 1. Let
i, k ∈ N\S be two distinct players. We have

ψi(N, vS)− ψi(N, vS∪{k})

= ∑
j∈N

v({j})
K

ψi(N, vS∪{j})− ∑
j∈N

v({j})
K

ψi(N, vS∪{k,j})

= ∑
j∈N

v({j})
K

[ψi(N, vS∪{j})− ψi(N, vS∪{k,j})]

= ∑
j∈N

v({j})
K

[ψi(N, vN)− ψi(N, vN)]

= 0,

where the first equality holds from (5.27), and the third equality holds by the induc-
tion hypothesis.

Hence,

ψi(N, vS) = ψi(N, vS∪{k}) = ψi(N, vN) for all i ∈ N\S, (5.28)

where the second equality holds by the induction hypothesis.

To prove this equality also for all j ∈ S, pick i ∈ N\S and j ∈ S. Proportional bal-
anced contributions under separatorization implies that ψj(N, vS)− ψj(N, vS∪{i}) =
v({j})
v({i}) [ψi(N, vS)− ψi(N, vS∪{j})] = v({j})

v({i}) [ψi(N, vS)− ψi(N, vS)] = 0, where the sec-
ond equality holds from (5.27).
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Hence,
ψj(N, vS) = ψj(N, vS∪{i}) = ψj(N, vN) for all j ∈ S,

where the second equality holds by the induction hypothesis.

Therefore, ψ(N, vS) = ψ(N, vN) holds for all S ⊆ N with 1 ≤ |S| ≤ n− 1. This,
together with (5.27), yields the desired formula.

Proof of Theorem 5.6. It is clear that ϕα satisfies the three axioms. Conversely, sup-
pose that ψ is a value on GN

nz satisfying the three axioms. For |N| = 1, ψ = ϕα

holds from efficiency. Next, suppose that |N| ≥ 3. By Lemma 5.2, efficiency and
proportional loss under separatorization imply that ψ satisfies (5.3). Moreover, the
α-egalitarian inessential game property implies that ψi(N, vN) = (1 − α)v({i}) +
α vN(N)

n = (1− α)v({i}) + α
n ∑j∈N v({j}). These two equations imply ψ = ϕα.

Proof of Theorem 5.7. It is clear that ϕα satisfies the three axioms. Conversely, sup-
pose that ψ is a value on GN

nz satisfying the three axioms. For any (N, v) ∈ GN
nz,

consider a game (N, w) ∈ GN
nz such that w({i}) = v({i}) for all i ∈ N, and w(N) =

α ∑j∈N w({j}) = α ∑j∈N v({j}). From Lemma 5.2, efficiency and proportional loss

under separatorization imply that ψi(N, w) = w({i})
∑j∈N w({j})w(N)−w({i})+ψi(N, wN) =

(α − 1)w({i}) + ψi(N, wN) for all i ∈ N. Since (N, w) is an α-essential game, α-
reasonable lower bound gives that ψi(N, w) ≥ α

n ∑j∈N w({j}). Hence,

(α− 1)w({i}) + ψi(N, wN) = ψi(N, w) ≥ α

n ∑
j∈N

w({j}) for all i ∈ N,

and thus ψi(N, wN) ≥ α
n ∑j∈N w({j}) + (1− α)w({i}) for all i ∈ N. By efficiency

applied to (N, wN) implies that wN(N) = ∑i∈N ψi(N, wN) ≥ α ∑j∈N w({j}) + (1−
α)∑j∈N w({j}) = ∑j∈N w({j}) = wN(N), and thus these inequalities are equalities.
Thus,

ψi(N, wN) =
α

n ∑
j∈N

w({j}) + (1− α)w({i}).

Since (N, vN) = (N, wN), then ψi(N, vN) = α
n ∑j∈N v({j})+ (1− α)v({i}). Again,

by Lemma 5.2, we have

ψi(N, v) =
v({i})

K
v(N)− v({i}) + ψi(N, vN)

=
v({i})

K
v(N)− v({i}) + α

n
K + (1− α)v({i})

=
v({i})

K
v(N) +

α

n
K− αv({i})

= ϕα
i (N, v).
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Proof of Corollary 5.1. It is clear that the PD value satisfies efficiency, proportional
loss under separatorization, and α-individual rationality for some α ∈ [0, 1]. Con-
versely, suppose that ψ is a value on GN

nz satisfying the three axioms. From Lemma 5.2,
ψ has the form given in (5.3). For any (N, v) ∈ GN

nz, similar as in the proof of
Theorem 5.7, consider a game (N, w) ∈ GN

nz such that w({i}) = v({i}) for all
i ∈ N and w(N) = α ∑j∈N v({j}). Since (N, w) is an α-essential game, α-individual
rationality implies that ψi(N, w) ≥ αw({i}) for all i ∈ N. By (5.3) applied to
(N, w) and (N, wN), we have ψi(N, w) − ψi(N, wN) = w({i})

∑j∈N w({j})w(N) − w({i}) =

(α − 1)w({i}). Hence, ψi(N, wN) = ψi(N, w) − (α − 1)w({i}) ≥ αw({i}) − (α −
1)w({i}) = w({i}). Efficiency then implies that it must be ψi(N, wN) = w({i}) for
all i ∈ N, since wN(N) = ∑j∈N w({j}).

Since (N, vN) = (N, wN), then ψi(N, vN) = w({i}) = v({i}). Again, by (5.3)
applied to (N, v) and (N, vN), we have ψi(N, v) = v({i})

K v(N)− v({i})+ψi(N, vN) =
v({i})

K v(N)− v({i}) + v({i}) = v({i})
K v(N) = PDi(N, v).

5.8 Conclusion

One of the main issues in economic allocation problems is the trade-off between
egalitarianism and egocentrism. The PD value applies an egocentric principle by
first assigning to every player its own stand-alone worth, and then allocates the
remaining surplus among all players proportional to their stand-alone worths. The
EPSD value focuses on egalitarianism in allocating the stand-alone worths by first
assigning to every player the average of all stand-alone worths, and also allocates
the remaining surplus among all players proportional to their stand-alone worths.

In this chapter, we have introduced the family of proportional division surplus
values, being the convex combinations of the EPSD and PD values. These values
make a trade-off between egalitarianism and egocentrism. Therefore, this is simi-
lar in spirit to the literature that combines diffferent economic allocation principles,
such as also, for example, the egalitarian Shapley values, the consensus values, or
the convex combinations of the ESD and ED values. We provided characterizations
for this family of values as well as any member belonging to this family using two
parallel axioms on a fixed player set based on player separatorization. In particu-
lar, we showed that weak no advantageous reallocation and proportional loss under
separatorization, together with some standard axioms such as efficiency, anonymity
and weak linearity, characterized the class of affine combinations of the EPSD and
PD values (Theorem 5.2). Additionally adding superadditive monotonicity charac-
terized a subclass of these values (Theorem 5.3) and then replacing anonymity by
weak desirability characterizes the class of convex combinations of the EPSD and
PD values (Theorem 5.4). We obtained similar results using proportional balanced
contributions under separatorization instead of proportional loss under separator-
ization (Theorem 5.5).
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As argued also in, for example, the literature on bankruptcy problems, a disad-
vantage of proportional division is that players with (relatively) small claims/stand-
alone worths, might receive a very low share in the resource to be divided. This can
be dampened by first giving all players a uniform fixed share of the resource, and
allocating the remainder proportional to the claims/stand-alone worths. For exam-
ple, in the convex combinations of the EPSD and PD values the players maximally
are guaranteed a uniform share in the sum of the stand-alone worths (if this is pos-
sible, i.e. when the worth of the grand coalition is at least equal to the sum of the
stand-alone worths), with the EPSD value being the extreme where all players first
get a uniform share in the sum of the worths of the stand-alone worths. Affine com-
binations of the EPSD and PD values allow other initial uniform shares.

Finally, using parameterized axioms that depend on the ‘weight’ α characterized
specific values in this class (Theorems 5.6 and 5.7). The study of other characteriza-
tions for the family of proportional surplus division values is left for future research.
It also seems to be worthwhile to investigate the convex combinations of the EPSD
and PD values for claims problems.
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Chapter 6

Equal Loss under Separatorization
and Egalitarian Values

6.1 Introduction

The equal division (ED) value and the equal surplus division (ESD) value are two
well-known egalitarian values for TU-games. In particular, the ED value, the ESD
value, and the classes of their affine and convex combinations have been given a
number of axiomatic characterizations. In the previous two chapters, we axiomat-
ically compared the two values with proportional values. In this chapter, which is
based on Zou and van den Brink (2020), we develop new characterizations of the ED
value, the ESD value, and the classes of affine and convex combinations of the ED
and ESD values.

Our characterizations involve a new axiom relying on separatorization. As men-
tioned in Chapter 5, separatorization of a player refers to the complete loss of pro-
ductive potential of cooperation that the worth of any coalition containing this player
equals the sum of the stand-alone worths of the players in this coalition, while the
worth of any coalition without her remains unchanged. This operation is in line
with ‘veto-ification’ introduced in van den Brink and Funaki (2009), dummification
introduced in Béal et al. (2018), and nullification studied in Gómez-Rúa and Vidal-
Puga (2010), Béal et al. (2016b), Ferrières (2017), Kongo (2018), Kongo (2019), and
Kongo (2020). The difference among them is which role that a player acts as. Specifi-
cally, veto-ification, dummification, nullification, and separatorization, respectively,
suppose a player becoming a veto player, a dummy player, a null player, and a sep-
arator (also known as a dummifying player in Casajus and Huettner (2014a)) in a
TU-game. There exist several axioms which evaluate the consequences of the afore-
mentioned operations in TU-games. Assuming the same change in payoff for all
other players under such operation, van den Brink and Funaki (2009) suggest the
veto equal loss property for the ED value, and Ferrières (2017) and Kongo (2018)
independently suggest the nullified equal loss property for the ED value, the ESD
value and the classes of their affine and convex combinations. Similarly, we define
the axiom of equal loss under separatorization imposing the same requirement, ex-
cept that a player becomes a separator.
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In this chapter, we show that equal loss under separatorization and efficiency
yield a family of values that all have in common that they equally split the worth of
the grand coalition. This family is not identical to the family implied by the axioms
of the nullified equal loss property and efficiency as given by Ferrières (2017). We
characterize the class of affine combinations of the ED and ESD values by using the
two axioms in addition to fairness (van den Brink, 2002) and homogeneity. While
Ferrières (2017) characterizes the classes of affine and convex combinations of the
ED and ESD values involving the nullified equal loss property, we highlight that re-
placing the nullified equal loss property by equal loss under separatorization yields
a new characterization. Moreover, parallel to the axiomatic results in Kongo (2018),
we provide characterizations of both the ED value and the ESD value. Besides, we
provide alternative characterizations of the classes of affine and convex combina-
tions of the ED and ESD values, which are similar to that of the PD and EPSD values
in Subsection 5.4.1.

This chapter is organized as follows. Section 6.2 introduces the concept of equal
loss under separatorization. Section 6.3 and Section 6.4 present the main results.
Section 6.5 shows the logical independence of the axioms in the characterization
results. All proofs are provided in Section 6.6. Section 6.7 concludes.

6.2 Equal loss under separatorization

Before stating the characterizations, we briefly recall the definition of separatoriza-
tion (see Section 5.2 in details, but the domain GN

nz is replaced by the class of all
games on player set N, i.e. GN) and then introduce a new axiom called equal loss
under separatorization.

Given a TU-game, as in Section 5.2, separatorization of a player means that the
worth of any coalition containing this player becomes equal to the sum of the stand-
alone worths of the players in this coalition. Formally, for (N, v) ∈ GN and h ∈ N,
we denote by (N, vh) the TU-game from (N, v) if player h becomes a separator, i.e.

vh(S) =

∑j∈S v({j}) if S ⊆ N, h ∈ S,

v(S) otherwise.

As argued in Chapter 5, (vi)j = (vj)i for every pair i, j ∈ N, and thus for every
coalition S ⊆ N, (N, vS), where the players in S became separators, is well-defined
and does not depend on the order in which the players become separators. Formally,
vS(T) = ∑j∈T v({j}) if T ∩ S 6= ∅, and vS(T) = v(T) otherwise, is obtained by
sequentially separatizing the players in S in any order. Note that (N, vN) is the
corresponding additive TU-game of (N, v), namely vN(S) = ∑j∈S v({j}) for all S ⊆
N.

The following new axiom imposes that if a player becomes a separator, then all
other players should be affected equally.
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• Equal loss under separatorization. For all (N, v) ∈ GN , all h ∈ N and all
i, j ∈ N\{h},

ψi(N, v)− ψi(N, vh) = ψj(N, v)− ψj(N, vh). (6.1)

Clearly, this axiom is closely related to proportional loss under separatorization
as discussed in Subsection 5.4.1, and is considered here on the class of TU-games GN

with |N| ≥ 3.

6.3 Axiomatic characterizations

In this section, we characterize the ED value, the ESD value, and the classes of their
affine and convex combinations on the class of TU-games with at least three players.

6.3.1 Axiomatizations of the family of affine combinations of ED and
ESD

Before stating the characterizations, we derive a useful property implied by the com-
bination of efficiency and equal loss under separatorization.

Lemma 6.1. Let |N| ≥ 3. If a value ψ on GN satisfies efficiency and equal loss under
separatorization, then

ψi(N, v)− ψi(N, vN) =
1
n
[v(N)− ∑

j∈N
v({j})], (6.2)

for all (N, v) ∈ GN and i ∈ N.

The proof of Lemma 6.1 and of all other results in this chapter can be found in
Section 6.6.

Lemma 6.1 is similar to Lemma 5.2, but considers, for efficient values, the con-
sequences of equal loss under separatorization instead of proportional loss under
separatorization.

Remark 6.1. Lemma 6.1 indicates that any value on GN satisfying efficiency and
equal loss under separatorization is uniquely determined by an efficient value de-
termined on additive TU-games since vN(S) = ∑j∈S v({j}) for all (N, v) ∈ GN and
S ⊆ N. This means that, efficiency and equal loss under separatorization in addi-
tion to some axiom(s) that determine the payoff allocation for additive TU-games,
characterize a unique value on GN .

Remark 6.2. Any value with the form of (6.2) satisfies equal loss under separator-
ization, but need not satisfy efficiency. For instance, the value ψ = ED + a, where
a ∈ RN is such that ∑j∈N ai 6= 0, also satisfies (6.2) but not efficiency.



138 Chapter 6. Equal Loss under Separatorization and Egalitarian Values

To characterize the class of affine combinations of the ED and ESD values, we
recall the well-known axioms of fairness and homogeneity.

• Fairness (van den Brink, 2002). For all (N, v), (N, w) ∈ GN and all i, j ∈ N such
that i and j are symmetric in (N, w), it holds that ψi(N, v + w) − ψi(N, v) =

ψj(N, v + w)− ψj(N, v).

• Homogeneity. For all (N, v) ∈ GN and all c ∈ R, it holds that ψ(N, cv) =

cψ(N, v).

Theorem 6.1. A value ψ on GN satisfies efficiency, equal loss under separatorization, fair-
ness, and homogeneity if and only if there is β ∈ R such that ψ = βESD + (1− β)ED.

Note that linearity implies homogeneity, and linearity and symmetry together
imply fairness. The following corollary is a direct consequence of Theorem 6.1. For
completeness, its proof is also given in Section 6.6.

Corollary 6.1. Let |N| ≥ 3. A value ψ on GN satisfies efficiency, equal loss under
separatorization, linearity, and symmetry if and only if there is β ∈ R such that
ψ = βESD + (1− β)ED.

Remark 6.3. As mentioned in Chapter 1, under efficiency, linearity, and symmetry,
the nullifying player property characterizes the ED value in van den Brink (2007),
and the dummifying player property characterizes the ESD value in Casajus and
Huettner (2014a). Therefore, the difference among the ED value, the ESD value,
and the class of their affine combinations is pinpointed to one axiom. Mind that,
from Remark 6.1, under efficiency and equal loss under separatorization, the dum-
mifying player property characterizes the ESD value, whereas the nullifying player
property cannot characterize the ED value. Consider, for example, ψi(N, v) = v(N)

n +

ai(N, v)v({i}) for all i ∈ N, where a : GN → RN is a function such that (i) a(N, v) =
a(N, w) of v({i}) = w({i}) for all i ∈ N, and (ii) ∑i∈N ai(N, v)v({i}) = 0 for all
(N, v) ∈ GN . This value also satisfies the three axioms.

In the next result, we present a new characterization of the class of convex com-
binations of the ED and ESD values.

Theorem 6.2. Let |N| ≥ 3. A value ψ on GN satisfies efficiency, equal loss under sepa-
ratorization, additivity, desirability, and superadditive monotonicity if and only if there is
β ∈ [0, 1] such that ψ = βESD + (1− β)ED.

Corollary 6.1 and Theorem 6.2 show that Theorem 1.11 and Theorem 1.12 (see
Ferrières (2017)) are still valid if the nullified equal loss property is replaced by equal
loss under separatorization, although (6.2) does not coincide with the formula of
values satisfying efficiency and the nullified equal loss property (see Formula (3),
Ferrières, 2017).
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6.3.2 Axiomatizations of the ED value and the ESD value

Notice that nullification of all players in a TU-game leads to the null game, whereas
separatorization of all players leads to the corresponding additive game. The null
game property requires that all players gain zero for any null game. This axiom
is well adapted to the representation of a special allocation among players under
nullification, but not separatorization. Thus, the null game property is used in The-
orem 1.13, as well as other axiomatic results in Kongo (2018) and Kongo (2019). In-
terestingly, Theorem 1.13 is still valid when we use equal loss under separatorization
instead of the nullified equal loss property. To show this, we first characterize the
ED value using the axiom of nonnegativity.

Lemma 6.2. Let |N| ≥ 3. A value ψ on GN satisfies efficiency, equal loss under separator-
ization, and nonnegativity if and only if ψ = ED.

Next, we use equal loss under separatorization in combination with monotonic-
ity axioms to characterize the ED, respectively ESD value.

Theorem 6.3. Let |N| ≥ 3. Let ψ be a value on GN that satisfies efficiency, equal loss under
separatorization, and the null game property. Then,

(i) ψ satisfies grand coalition monotonicity if and only if ψ = ED.

(ii) ψ satisfies Id+sur monotonicity if and only if ψ = ESD.

6.4 Alternative axiomatizations using homogeneity

Equal loss under separatorization and proportional loss under separatorization re-
spectively suppose equality and proportionality on allocation rules when a player
becomes a separator. In Subsection 5.4.1, the axiomatic results on the classes of
affine and convex combinations of the PD and EPSD values use proportional loss
under separatorization. As a contrast, this subsection provides axiomatizations of
the classes of affine and convex combinations of the ED and ESD values.

We will employ the axioms of anonymity, weak no advantageous reallocation,
continuity, and weak desirability, which are described in Subsection 1.3 and Subsec-
tion 5.2, but here they are considered on the class QAN .

Without going into details, we first provide Theorem 6.4 that characterizes a fam-
ily of values on the domain of quasi-additive games, of which the proof is similar to
that of Theorem 5.1. This theorem is also a direct extension of Theorem 1 in Chun
(1988), and the proof is omitted.

Theorem 6.4. Let |N| ≥ 3. A value ψ on QAN satisfies efficiency, anonymity, weak no
advantageous reallocation, and continuity if and only if there exists a continuous function
g : R2 → R such that

ψi(N, v) =
v(N)

n
+

(
v({i})−

∑j∈N v({j})
n

)
g(∑

j∈N
v({j}), v(N)) (6.3)
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for all (N, v) ∈ QAN and i ∈ N.

Remark 6.4. The axioms invoked in Theorem 5.1 and Theorem 6.4 are the same
except that they are respectively considered on QAN

nz and QAN . For every (N, v) ∈
QAN

nz, since ∑j∈N v({j}) 6= 0, then g′ : R\{0} ×R→ R is well-defined by

g(∑
j∈N

v({j}), v(N)) =
v(N)

∑
j∈N

v({j}) −
1

∑
j∈N

v({j}) g′(∑
j∈N

v({j}), v(N)).

Then, (6.3) can be written as

ψi(N, v) =
v({i})v(N)

∑j∈N v({j}) −
(

v({i})
∑j∈N v({j}) −

1
n

)
g′(∑

j∈N
v({j}), v(N)),

which coincides with (5.4).

Remark 6.5. Similar to Remark 5.3, if continuity is replaced by continuity in least at
one point, then it does not affect (6.3), but only affects that g is no longer required to
be continuous.

Theorem 6.5. Let |N| ≥ 3. A value ψ on GN satisfies efficiency, anonymity, weak no
advantageous reallocation, equal loss under separatorization, and homogeneity if and only if
there is β ∈ R such that ψ = βESD + (1− β)ED.

The next theorem provides an alternative axiomatization of the family of convex
combinations of the ED and ESD values. This theorem is similar to Theorem 5.4, but
the proof uses Lemma 6.3 instead of Lemma 5.3.

Theorem 6.6. Let |N| ≥ 3. A value ψ on GN satisfies efficiency, weak no advantageous
reallocation, equal loss under separatorization, homogeneity, superadditive monotonicity,
and weak desirability if and only if there is β ∈ [0, 1] such that ψ = βESD + (1− β)ED.

Lemma 6.3 reveals that weak desirability together with some of the axioms in
Theorem 6.5 imply anonymity.

Lemma 6.3. On GN with |N| ≥ 3, efficiency, weak no advantageous reallocation, equal loss
under separatorization, and weak desirability imply anonymity.

Theorem 6.5 and Theorem 6.6 are still valid if homogeneity is replaced by weak
linearity on GN , which are similar to Theorem 5.2 and Theorem 5.4.

• Weak linearity. For all (N, v), (N, w) ∈ GN and a ∈ R such that there exists
c ∈ R with w({i}) = cv({i}) for all i ∈ N, it holds that ψ(N, av + w) =

aψ(N, v) + ψ(N, w).

To conclude, in Table 6.1 the axiomatic results (except Theorem 6.1) stated in this
chapter are summarized. In this table, ‘

√
’ has the meaning that the properties are

used in each theorem.
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TABLE 6.1: Properties of the values for TU-games

Values
βESD + (1− β)ED

β ∈ R β ∈ [0, 1] β = 0 β = 1
Efficiency

√ √ √ √ √ √

Linearity
√

Additivity
√

Homogeneity
√ √

Symmetry
√

Anonymity
√

Equal loss under separatorization
√ √ √ √ √ √

The null game property
√ √

Superadditive monotonicity
√ √

Desirability
√

Weak desirability
√

Grand coalition monotonicity
√

Id+sur monotonicity
√

Weak no advantageous realloca-
tion

√ √

Th.6.1 Th.6.5 Th.6.2 Th.6.6 Th.6.3(i) Th.6.3(ii)

6.5 Independence of axioms

Logical independence of the axioms used in the characterization results can be shown
by the following alternative values.

Theorem 6.1:

(i) The value defined for all (N, v) ∈ GN and i ∈ N by

ψi(N, v) = 0 (6.4)

satisfies all axioms except efficiency.

(ii) The Shapley value satisfies all axioms except equal loss under separatorization.

(iii) The value defined for all (N, v) ∈ GN with N = {1, 2, ..., n} and i ∈ N by

ψi(N, v) =
i

∑j∈N j ∑
j∈N

v({j}) + 1
n
[v(N)− ∑

j∈N
v({j})] (6.5)

satisfies all axioms except fairness.

(iv) Let a ∈ RN be such that ∑i∈N ai = 0 and a 6= 0. The value defined for all
(N, v) ∈ GN and i ∈ N by

ψi(N, v) =
v(N)

n
+ ai (6.6)

satisfies all axioms except homogeneity.
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Corollary 6.1:

(i) The value defined by (6.4) satisfies all axioms except efficiency.

(ii) The Shapley value satisfies all axioms except equal loss under separatorization.

(iii) The value defined by (6.5) satisfies all axioms except symmetry.

(iv) The value defined for all (N, v) ∈ GN by

ψ(N, v) =

ED(N, v) if v(S) > 0 for all S ⊆ N with |S| = 1;

ESD(N, v) otherwise.
(6.7)

satisfies all axioms except linearity.

Theorem 6.2:

(i) The value defined by (6.4) satisfies all axioms except efficiency.

(ii) The value defined for all (N, v) ∈ GN with N = {1, 2, ..., n} by ψ1(N, v) = v(N)

and ψi(N, v) = 0 for any i 6= 1 satisfies all axioms except equal loss under
separatorization.

(iii) The value defined by (6.7) satisfies all axioms except additivity.

(iv) The value defined for all (N, v) ∈ GN by ψ(N, v) = 2ED(N, v) − ESD(N, v)
satisfies all axioms except desirability.

(v) The value defined for all (N, v) ∈ GN by ψ(N, v) = 2ESD(N, v) − ED(N, v)
satisfies all axioms except superadditive monotonicity.

Theorem 6.3:

(i) The value defined by (6.4) satisfies all axioms except efficiency.

(ii) The value defined for all (N, v) ∈ GN with N = {1, 2, ..., n} by ψi(N, v) =
i

∑j∈N j v(N) for all i ∈ N satisfies all axioms of Theorem 6.3(i) except equal loss
under separatorization.

(iii) The value defined by (6.6) satisfies all axioms of Theorem 6.3(i) except the null
game property.

(iv) The value defined for all (N, v) ∈ GN with N = {1, 2, ..., n} and i ∈ N by

ψi(N, v) = v({i}) + i
∑j∈N j

[v(N)− ∑
j∈N

v({j})]

satisfies all axioms of Theorem 6.3(ii) except equal loss under separatorization.
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(v) Let a ∈ RN be such that ∑j∈N aj = 0 and a 6= 0. The value defined for all
(N, v) ∈ GN by ψ(N, v) = ESD(N, v) + a satisfies all axioms of Theorem 6.3(ii)
except the null game property.

(vi) The value defined by (6.5) satisfies all axioms, but neither grand coalition mono-
tonicity nor Id+sur monotonicity.

Theorems 6.5 and 6.6 :

(i) The value defined by (6.4) satisfies all axioms except efficiency.

(ii) The value defined for all (N, v) ∈ GN and all i ∈ N, by

ψi(N, v) =


1
n [v(N)−∑j∈N v({j})] + (v({i}))2

∑j∈N(v({j}))2 ∑j∈N v({j}), if (N, v) ∈ GN
nz,

v(N)
n , otherwise.

satisfies all axioms except weak no advantageous reallocation.

(iii) The value defined by (6.5) satisfies all axioms except anonymity and weak de-
sirability.

(iv) The Shapley value satisfies all axioms except equal loss under separatorization.

(v) The value defined for all (N, v) ∈ GN by

ψ(N, v) =

ESD(N, v), if ∑j∈N v({j}) ≥ 0,

ED(N, v), otherwise.

satisfies all axioms except homogeneity.

(vi) The value defined for all (N, v) ∈ GN by ψ(N, v) = 2ESD(N, v) − ED(N, v)
satisfies all axioms of Theorem 6.6 except superadditive monotonicity.

6.6 Proofs

Proof of Lemma 6.1. Let ψ be a value on GN , |N| ≥ 3, satisfying efficiency and equal
loss under separatorization. We divide the proof in three steps.

Step 1. By equal loss under separatorization, (6.1) is satisfied for any triple of
players. Taking h ∈ N and i ∈ N\{h}, summing (6.1) over j ∈ N\{h} and using
efficiency yields that for all (N, v) ∈ GN , h ∈ N and i ∈ N\{h},

ψi(N, v)− ψi(N, vh) =
1

n− 1

 ∑
j∈N\{h}

ψj(N, v)− ∑
j∈N\{h}

ψj(N, vh)


=

1
n− 1

[v(N)− ψh(N, v)− vh(N) + ψh(N, vh)]. (6.8)
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Step 2. Next, we show that for all (N, v) ∈ GN and S ⊆ N with 1 ≤ |S| ≤ n− 1,

ψ(N, vS) = ψ(N, vN). (6.9)

We derive the assertion by an induction on the number of separators.

Initialization. Since (N, vN\{h}) = (N, vN) for any h ∈ N, then ψ(N, vS) =

ψ(N, vN) for all S ⊆ N with |S| = n− 1,

Induction hypothesis (IH). Assume that ψ(N, vT) = ψ(N, vN) holds for all T ⊆ N
with |T| = t, 2 ≤ t ≤ n− 1.

Induction step. Consider (N, vS) ∈ GN and S ⊂ N such that |S| = t − 1. Since
vS(N) = ∑k∈N v({k}) and vS({k}) = v({k}) for all k ∈ N, then by (6.8) applied to
(N, vS), we obtain, using vS(N) = vS∪{h}(N), that for all i 6= h,

ψi(N, vS)− ψi(N, vS∪{h}) =
1

n− 1
[−ψh(N, vS) + ψh(N, vS∪{h})]. (6.10)

Pick any j ∈ N\S and i ∈ N\(S ∪ {j}) (which is possible since |S| ≤ n− 2). We
obtain

ψi(N, vS)− ψi(N, vS∪{j}) =
1

n− 1
[−ψj(N, vS) + ψj(N, vS∪{j})]

=
1

n− 1
[−ψj(N, vS) + ψj(N, vN)]

=
1

n− 1
[−ψj(N, vS) + ψj(N, vS∪{i})]

=
1

n− 1
[ 1

n− 1
[ψi(N, vS)− ψi(N, vS∪{i})]

]
=

1
(n− 1)2 [ψi(N, vS)− ψi(N, vS∪{j})],

where the first and fourth equalities hold from (6.10), and the other three equalities
hold by the induction hypothesis.

Since n2−2n
(n−1)2 6= 0, this implies that ψi(N, vS) = ψi(N, vS∪{j}) for every i ∈ N\(S ∪

{j}). Pick any k ∈ S. By equal loss under separatorization, we have ψk(N, vS) −
ψk(N, vS∪{j}) = ψi(N, vS)− ψi(N, vS∪{j}) = 0, which implies

ψk(N, vS) = ψk(N, vS∪{j}).

Since vS(N) = vS∪{j}(N), efficiency then implies that ψj(N, vS) = ψj(N, vS∪{j}).
There exists such j ∈ N for each S ( N, so that

ψ(N, vS) = ψ(N, vS∪{j}) = ψ(N, vN),

where the latter equality follows from the induction hypothesis.
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Step 3. By (6.9), ψ(N, vh) = ψ(N, vN) for all h ∈ N. Then (6.8) implies that for
two distinct players i, h ∈ N,

ψi(N, v)− ψi(N, vN) =
1

n− 1
[v(N)− ψh(N, v)− vN(N) + ψh(N, vN)].

Summing the above equality over h ∈ N\{i} yields

(n− 1)[ψi(N, v)− ψi(N, vN)]

=
1

n− 1

[
(n− 1)[v(N)− vN(N)]− ∑

h∈N\{i}
(ψh(N, v)− ψh(N, vN))

]
=

1
n− 1

[
(n− 2)[v(N)− vN(N)] + [ψi(N, v)− ψi(N, vN)]

]
,

where the second equality follows from efficiency. It follows that n(n−2)
n−1 [ψi(N, v)−

ψi(N, vN)] = n−2
n−1 [v(N)− vN(N)], which implies (6.2) since n−2

n−1 6= 0 (by n ≥ 3).

Proof of Theorem 6.1. Existence is obvious. For the uniqueness part, let ψ be a value
on GN that satisfies the four axioms. By Lemma 6.1 and Remark 6.1, we have to
show that ψ(N, v) = βESD(N, v) + (1− β)ED(N, v), β ∈ R, for all additive games
(N, v). Let D(N, v) = {i ∈ N | v({i}) 6= 0}. We prove uniqueness by induction on
d(N, v) = |D(N, v)|.

Initialization. If d(N, v0) = 0, i.e. (N, v0) is the null game, then homogeneity
implies that ψi(N, v0) = 0 for all i ∈ N.

Suppose that d(N, v) = 1, i.e. v = v({i})u{i}. Since any j, k ∈ N\{i} are sym-
metric in (N, u{i}), fairness implies that ψj(N, v0 + u{i}) − ψj(N, v0) = ψk(N, v0 +

u{i})− ψk(N, v0), and thus ψj(N, u{i}) = ψk(N, u{i}). Efficiency then implies that for
all j ∈ N\{i},

ψj(N, u{i}) =
1− ψi(N, u{i})

n− 1
. (6.11)

Next, pick any i, j ∈ N with i 6= j, and consider (N,−u{i}) and (N, u{i} + u{j}).
Since i and j are symmetric in (N, u{i} + u{j}), fairness implies that

ψi(N,−u{i} + u{i} + u{j})− ψi(N,−u{i}) = ψj(N,−u{i} + u{i} + u{j})− ψj(N,−u{i}).

By homogeneity,

ψi(N, u{j}) + ψi(N, u{i}) = ψj(N, u{j}) + ψj(N, u{i}). (6.12)

Combining (6.11) with (6.12) yields

1− ψj(N, u{j})

n− 1
+ ψi(N, u{i}) = ψj(N, u{j}) +

1− ψi(N, u{i})
n− 1

.
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Since

ψi(N, u{i})−
1− ψi(N, u{i})

n− 1
=

(n− 1)ψi(N, u{i})− 1 + ψi(N, u{i})
n− 1

=
n.ψi(N, u{i})− 1

n− 1

and similar for j, it follows that

ψi(N, u{i}) = ψj(N, u{j}). (6.13)

According to (6.13), setting a = ψi(N, u{i}) for all i ∈ N, and β = na−1
n−1 , for

v = v({i})u{i}, we have

β ESDi(N, v) + (1− β)EDi(N, v)

=
na− 1
n− 1

(
v({i}) + 1

n

(
v(N)− ∑

j∈N
v({j})

))
+

n(1− a)
n− 1

· v(N)

n

=
na− 1
n− 1

v({i}) + 0 +
1− a
n− 1

v({i})

= v({i})a

= v({i}ψi(N, u{i})

= ψi(N, v),

where the last equality follows from homogeneity.

By (6.11) and homogeneity,

ψj(N, v) =
1− a
n− 1

v({i}) = β ESDj(N, v) + (1− β)EDj(N, v)

for all j ∈ N\{i}.
Induction hypothesis. Assume that ψ(N, v′) is uniquely determined whenever

d(N, v′) = k, 1 ≤ k ≤ n− 1.

Induction step. Let (N, v) ∈ GN be an additive game such that d(N, v) = k + 1.
Take h ∈ D(N, v), and consider game (N, v′) given by v′ = v− v({h})u{h}. Take a
j ∈ N\{h}. Then, for all i ∈ N\{j, h}, fairness implies that

ψi(N, v)− ψj(N, v) = ψi(N, v′)− ψj(N, v′), (6.14)

where the right-hand side is determined by the induction hypothesis.

Take g ∈ D(N, v)\{h} (which exists since d(N, v) ≥ 2) and j ∈ N\{g, h} (which
exists since n ≥ 3), and consider v′′ = v− v({g})u{g}. Then fairness implies

ψh(N, v)− ψj(N, v) = ψh(N, v′′)− ψj(N, v′′), (6.15)

where the right-hand side is determined by the induction hypothesis.
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Finally, efficiency implies that

∑
i∈N

ψi(N, v) = v(N). (6.16)

Since the (n− 2) + 1 + 1 = n equations (6.14), (6.15) and (6.16) are linearly indepen-
dent in the n unkown payoffs ψi(N, v), these payoffs are uniquely determined.

Thus, the payoffs in any additive game (N, v) ∈ GN are uniquely determined
for any choice of a = ψi(N, u{i}), i ∈ N, and thus for any choice of β. Since the
corresponding affine combination of the ESD and ED values satisfies the axioms, it
must be that ψ = βESD + (1− β)ED.

Proof of Corollary 6.1. Existence is obvious. For the uniqueness part, let ψ be a
value that satisfies the four axioms. By Lemma 6.1, ψ has the form of (6.2).

First, pick any i ∈ N and j ∈ N\{i}, and consider (N, u{i}), we have

1− ψi(N, u{i}) = ∑
k∈N\{i}

ψk(N, u{i}) = (n− 1)ψj(N, u{i}),

where the first equality follows from efficiency, and the second equality follows from
symmetry.

Thus,

ψj(N, u{i}) =
1− ψi(N, u{i})

n− 1
. (6.17)

Second, pick any i, j ∈ N with i 6= j, and consider (N, u{i} + u{j}). Since players
i and j are symmetric, symmetry implies that ψi(N, u{i} + u{j}) = ψj(N, u{i} + u{j}).
By linearity,

ψi(N, u{i}) + ψi(N, u{j}) = ψj(N, u{i}) + ψj(N, u{j}). (6.18)

Together with (6.17) and (6.18), we obtain

ψi(N, u{i}) +
1− ψj(N, u{j})

n− 1
=

1− ψi(N, u{i})
n− 1

+ ψj(N, u{j}).

It follows that n
n−1 ψi(N, u{i}) = n

n−1 ψj(N, u{j}), which implies

ψi(N, u{i}) = ψj(N, u{j}). (6.19)

Finally, with (6.19), let us set a = ψi(N, u{i}) for all i ∈ N. Obviously, (6.17)
implies that ψi(N, u{j}) =

1−a
n−1 for all i, j ∈ N with i 6= j. Then, for any i ∈ N,

ψi(N, vN) = ψi(N, ∑
j∈N

v({j})u{j})
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= ∑
j∈N

v({j})ψi(N, u{j})

= av({i}) + 1− a
n− 1 ∑

j∈N\{i}
v({j})

=
na− 1
n− 1

v({i}) + 1− a
n− 1 ∑

j∈N
v({j}),

where the second equality follows from linearity.

Setting β = na−1
n−1 , then ψi(N, vN) = βv({i}) + 1−β

n ∑j∈N v({j}). Plugging this
equation into (6.2) yields ψ = βESD + (1− β)ED.

Proof of Theorem 6.2. It is clear that ψ = βESD + (1− β)ED satisfies the five ax-
ioms. Conversely, let ψ be a value on GN that satisfies the five axioms. Lemma 5
in Casajus and Huettner (2013) shows that efficiency, additivity and desirability im-
ply linearity. Moreover, desirability implies symmetry. From Corollary 6.1, there is
β ∈ R such that ψ = βESD + (1− β)ED. Furthermore, desirability brings β ≥ 0,
and superadditive monotonicity brings β ≤ 1.

Proof of Lemma 6.2. It is clear that the ED value satisfies efficiency, equal loss under
separatorization, and nonnegativity. Conversely, suppose that ψ is a value on GN

that satisfies the three axioms. For any (N, v) ∈ GN , consider (N, w) ∈ GN such that
w({i}) = v({i}) for all i ∈ N and w(N) = 0. By (6.2) (see Lemma 6.1) applied to
(N, w) and (N, wN), we have ψi(N, w)− ψi(N, wN) = − 1

n ∑j∈N w({j}) for all i ∈ N.
It follows that

ψi(N, wN) = ψi(N, w) +
1
n ∑

j∈N
w({j}) ≥ 1

n ∑
j∈N

w({j}),

where the last inequality holds from nonnegativity. Then, efficiency implies that
ψi(N, wN) = 1

n ∑j∈N w({j}) for all i ∈ N.

Since (N, vN) = (N, wN), then ψi(N, vN) = 1
n ∑j∈N v({j}). Again, by (6.2) but

now applied to (N, v) and (N, vN), we have

ψi(N, v) =
1
n
[v(N)− ∑

j∈N
v({j})] + ψi(N, vN)

=
1
n
[v(N)− ∑

j∈N
v({j})] + 1

n ∑
j∈N

v({j})

=
1
n

v(N),

as desired.
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Proof of Theorem 6.3. (i) Existence is obvious. Uniqueness follows from Lemma 6.2
and the fact that the null game property and grand coalition monotonicity imply
nonnegativity.

(ii) Existence is obvious. For the uniqueness part, let ψ be a value that satisfies
the four axioms. Consider two additive games (N, v), (N, w) ∈ GN and i ∈ N such
that v({i}) = w({i}). By Id+sur monotonicity, ψi(N, v) = ψi(N, w), which means
that i’s payoff depends only on her stand-alone worth. Next, consider the additive
game (N, v′) ∈ GN such that v′({i}) = v({i}) and v′({j}) = 0 for all j ∈ N\{i},
and let (N, v0) ∈ GN be the null game. It holds that ψi(N, v) = ψi(N, v′) = v({i})−
∑j∈N\{i} ψj(N, v′) = v({i})−∑j∈N\{i} ψj(N, v0) = v({i}), where the second equality
follows from efficiency, and the last equality follows from the null game property.
The assertion immediately follows from Remark 6.1.

Proof of Theorem 6.5. The proof is similar to that of Theorem 5.2, but we put it here
for completeness as follows.

It is clear that ψ = βESD + (1− β)ED, β ∈ R, satisfies the five axioms. Con-
versely, let ψ be a value on GN that satisfies the five axioms. The proof is divided
into two steps. In Step 1, we derive the formula of ψ on QAN ; in Step 2, we extend
the formula obtained in Step 1 from QAN to GN .

Step 1. Consider any game (N, v) ∈ QAN and (N, vN) ∈ AN . From Lemma 6.1,

ψi(N, v)− ψi(N, vN) =
1
n
[v(N)− ∑

j∈N
v({j})] for all i ∈ N. (6.20)

Since (N, vN) is an additive game, it must be that ψi(N, vN) doesn’t have the
terms of v(S), S ⊆ N, |S| 6= 1. Considering that the right-hand side of (6.20) only
has the terms of v(S) with |S| = 1, n, we obtain from (6.20) that ψi(N, v) has the term
1
n v(N), but no terms of v(S), S ⊆ N, 1 < |S| < n. This implies that ψi(N, v) is a
continuous function with respect to v(S), S ⊆ N, |S| 6= 1.

As stated in Theorem 6.4 and Remark 6.5, ψi(N, v) and ψi(N, vN) have the form
of (6.3). Substituting them into (6.20), we obtain for every i ∈ N,

ψi(N, v)− ψi(N, vN)− 1
n
[v(N)− ∑

j∈N
v({j})]

=

(
v({i})−

∑j∈N v({j})
n

)
(g(∑

j∈N
v({j}), v(N))− g(∑

j∈N
v({j}), vN(N))

= 0, (6.21)

where the last equality follows from (6.20).

To obtain the formula of ψi(N, v), (N, v) ∈ QAN , we consider two cases:
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(i) Suppose that (N, v) ∈ QAN is such that v({i}) 6= v({j}) for some i, j ∈ N. It
must be that v({h})

K 6= 1
n for some h ∈ N. Then, from (6.21) we obtain

g(∑
j∈N

v({j}), v(N)) = g(∑
j∈N

v({j}), vN(N)),

which means that g : R2 → R is a constant function with respect to its second
argument for each ∑

j∈N
v({j}) since vN(N) = ∑

j∈N
v({j}).

Let f : R → R be such that f (x) = g(x, y) for all x, y ∈ R. Then (6.3) can be
written as

ψi(N, v) =
v(N)

n
+

(
v({i})−

∑j∈N v({j})
n

)
f (∑

j∈N
v({j})). (6.22)

Next, pick any a ∈ R, consider (N, av) ∈ QAN . By (6.22) applied to this game,
we have

ψi(N, av) =
av(N)

n
+

(
av({i})−

∑j∈N av({j})
n

)
f (∑

j∈N
av({j})).

By homogeneity, ψi(N, av) = aψi(N, v), which implies

f (∑
j∈N

v({j})) = f (∑
j∈N

av({j})).

Since a ∈ R can take any real number, this implies that f is a constant function
on R. Thus, let f (∑j∈N v({j})) = β, where β is an arbitrary constant. Therefore,
using (6.22) we have

ψi(N, v) =
v(N)

n
+ β

(
v({i})−

∑j∈N v({j})
n

)
, (6.23)

which equals to βESD + (1− β)ED.

(ii) Suppose that (N, v) ∈ QAN is such that v({i}) = v({j}) for all i, j ∈ N. Then,
by (6.3) we have ψi(N, v) = v(N)

n , which also coincides with (6.23).

Step 2. Consider any game (N, v) ∈ GN . Applying (6.23) to (N, vN), we have

ψi(N, vN) = βv({i}) + 1− β

n ∑
j∈N

v({j}).

Substituting this equation into (6.2) from Lemma 6.1, we obtain

ψi(N, v) = ψi(N, vN) +
1
n
[v(N)− ∑

j∈N
v({j})]
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= βv({i}) + 1− β

n ∑
j∈N

v({j}) + 1
n
[v(N)− ∑

j∈N
v({j})]

=
v(N)

n
+ βv({i})− β

n ∑
j∈N

v({j})

= βESDi(N, v) + (1− β)EDi(N, v).

The proof is completed.

Proof of Lemma 6.3. Let ψ be a value on GN satisfying efficiency, weak no advan-
tageous reallocation, equal loss under separatorization, and weak desirability. Sim-
ilar to the proof of Lemma 5.3, we can obtain that if a value ψ on AN satisfies effi-
ciency, weak no advantageous reallocation, and weak desirability, then it also satis-
fies anonymity.

From Lemma 6.1, efficiency and equal loss under separatorization imply (6.2),
and thus ψi(N, v) = ψi(N, vN)+ 1

n [v(N)−∑j∈N v({j})] = ψπ(i)(N, πvN)+ 1
n [πv(N)−

∑j∈N πv({π(j)})] = ψπ(i)(N, πv) since πvN = (πv)N for any permutation π. Thus,
ψ satisfies anonymity on GN .

Proof of Theorem 6.6. It is clear that ψ = βESD + (1− β)ED, β ∈ [0, 1], satisfies the
six axioms. Conversely, let ψ be a value on GN that satisfies the six axioms. As stated
in Lemma 6.3 and Theorem 6.5, there is β ∈ R such that ψ = βESD + (1− β)ED.
Moreover, weak desirability brings β ≥ 0, and superadditive monotonicity brings
β ≤ 1.

6.7 Conclusion

In this chapter, we have proposed the axiom of equal loss under separatorization,
and have formalized the class of values satisfying equal loss under separatorization
and efficiency. After that, we added other well-known axioms to characterize (i)
the class of affine combinations of the ED and ESD values, (ii) the class of convex
combinations of the ED and ESD values, (iii) the ED value, and (iv) the ESD value.

Similar to the discussion in Subsection 5.4.2, we can also employ a new axiom,
called balanced contributions under separatorization, requiring that, for any two players,
the effects of one of them becoming a separator on the payoff of the other, should be
affected equally. So, whereas equal loss under separatorization considers the effect
on the payoffs of two players of a third player becoming a separator, the axiom here
compares the mutual effect on the payoffs of the two players becoming separators
(similar as in the famous balanced contributions axiom). Without going into details,
we mention that this axiom can be used to replace equal loss under separatorization
in the results in Chapter 6.
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To extend the results in Kongo (2018), Kongo (2019) characterizes the weighted
(surplus) division values by weakening the nullified equal loss property into sign
equal effect of players’ nullification. This weakening axiom requires that a player’s
nullification affects all others’ payoffs in the same direction (positive, 0, or negative).
As shown in this chapter, equal loss under separatorization instead of the nullified
equal loss property keeps the validity of the results in Kongo (2018). So, it might be
worthwhile to explore whether it is possible to characterize the weighted (surplus)
division values by a weaker variation of equal loss under separatorization.
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Summary

This thesis consists of six chapters on cooperative game theoretic issues. Except
Chapter 1, which is an introductory chapter, each of the other five chapters contains
original results. The common denominator between almost all chapters is the em-
phasis on a specific proportionality principle in the allocation process of the worth
that results from the cooperation of all players. Although the proportionality prin-
ciple is quite common in the theory of resource allocation (especially in bankruptcy
problems), it has been relatively ignored or neglected in cooperative game theory.
This thesis convincingly fills this gap: by proposing new axioms to characterize ei-
ther existing – but often neglected in the literature – proportional value, or new
proportional values. The thesis explores a still underdeveloped area in cooperative
game theory.

Chapter 2 studies the proportional division value for TU-games. The proportional
division (PD) value allocates the worth of the grand coalition in proportion to the
stand-alone worths of the players. We characterize this value in terms of some intu-
itive fairness criteria that are widely used in the value theory for TU-games, includ-
ing equal treatment of equals, monotonicity, and consistency. Remarkably, proportional-
balanced treatment, one of our axioms, reflects not only equal treatment of equals but
also unequal treatment of unequals. Our monotonicity axioms are a relaxation of three
existing axioms by adding restrictions on the stand-alone worths of the players. The
consistency principle we adopted is the well-known projection consistency, which is
used in axiomatizing the equal division (ED) value and the equal surplus division
(ESD) value.

Chapter 3 identifies the value by extending the balanced cost reduction prop-
erty from queueing problems, which are so-called 2-games, to TU-games. The bal-
anced cost reduction property states that the payoff of any player equals the sum of all
changes in the payoffs of all other players if that player leaves the queueing prob-
lem. After extending the characterization result for queueing problems to the class
of 2-games, we show that an extension of this axiom for general TU-games is incom-
patible with efficiency. However, a variation of this axiom is compatible with effi-
ciency. This variation, called weak balanced externalities, requires that every player’s
payoff is the same fraction of its total externality inflicted on the other players. More
specifically, this axiom and efficiency together characterize the PANSC value, which
allocates the worth of the grand coalition proportional to the separable costs of the
players. The PANSC value and the PD value are dual to each other. Following a sim-
ilar idea as in Chapter 2, we further provide characterizations of the PANSC value



154 Summary

for the classes of general TU-games and two-player games.

In Chapter 4, assuming that the worth of the grand coalition is randomly divided
into two parts, we define a value by allocating the two parts based on proportional
and equal division methods respectively. Each part is a linear function with respect
to the worths of all coalitions, so various functions give rise to various values. We
axiomatize this family of values by employing efficiency, the balanced individual
excess ratio property, continuity, weak additivity, anonymity, and no advantageous
reallocation across individuals. Meanwhile, efficiency, the balanced individual ex-
cess ratio property, and linearity together characterize the family of affine combina-
tions of the ED value and the ESD value. It is worth noting that a novel analytical
approach is provided to deal with a generalization of this family by only imposing
projection consistency. As it turns out, this exactly picks out the PD value and the
affine combinations of the ED value and the ESD value. We also implement specific
values in this family by a procedure based on a one-by-one formation of the grand
coalition when considering all possible permutations.

Chapter 5 deals with a subfamily of values studied in Chapter 4. This family is
introduced by taking into account that the surplus of the grand coalition is allocated
proportionally to the stand-alone worths of the players. They are formalized by the
affine combinations of the PD value and the new EPSD value. The EPSD value first
assigns to every player the average of all stand-alone worths, and then allocates the
remaining surplus among all players proportional to their stand-alone worths. We
provide characterizations for this family of values as well as any member belong-
ing to this family using two parallel axioms on a fixed player set based on player
separatorization.

Chapter 6 investigates the convex combinations of the ED value and the ESD
value based on separatorization introduced in Chapter 5. This family is a class of
egalitarian values, but also a subfamily of values studied in Chapter 4. We extend
the existing results in Ferrières (2017) and Kongo (2018) by employing equal loss
under separatorization instead of the nullified equal loss property. Equal loss un-
der separatorization requires that any player becoming a separator yields the same
change in payoff for all other players. We derive the expression of values that sat-
isfy this axiom and efficiency. Then, we show that these two axioms together with
fairness and homogeneity characterize the class of affine combinations of the ED
and ESD values. On the other hand, following Ferrières (2017) and Kongo (2018),
we added other well-known axioms and characterized the ED value, the ESD value,
and the classes of their affine and convex combinations.

This thesis contains new axiomatic characterizations of either allocation rules al-
ready studied in the literature or new allocation rules. It may open a way to new ax-
iomatic studies and new solutions for applied problems. Although the thesis merely
discusses possible applications of proportional values in cooperative games, it seems
clear that economic or operations research applications would deserve a detailed
study.
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