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ABSTRACT Transient thermocapillary convection under a surface of a linear 
temperature distribution in a top open cavity at a zero-gravity condition is investigated 
using scaling analysis and numerical simulation. Induced by the linear temperature 
distribution on a surface, a surface flow (SF) occurs. Then the pressure gradient near 
the sidewall drives a vertical flow (VF). The evolution in dynamics and heat transfer of 
the SF and the VF is argued, which is determined by Marangoni number (Ma), Prandtl 
number (Pr) and aspect ratio (A). Scaling analysis shows that there are four typical 
evolutions of the VF and two typical evolutions of the thermal boundary layer (TBL). 
Further, velocity, boundary layer thickness, and Nusselt number of transient 
thermocapillary convection are scaled under different regimes in different evolutions 
and a number of new scaling laws are proposed. Additionally, the flow structures under 
different regimes are characterized and selected scaling laws obtained in scaling 
analysis are validated by numerical simulation results.  

KEYWORDS: transient thermocapillary convection, linear temperature distribution, 
scaling analysis, numerical simulation 

 

NOMENCLATURE 

A aspect ratio 

Aε aspect ratio of surface layer 
cp specific heat of working fluid (Jkg-1K-1) 
Fα  thermocapillary force (ms−2) 
H height of cavity (m) 
k temperature gradient factor (Km−1) 
L  length of cavity (m) 
Ma Marangoni number 
Nu Nusselt number 
p pressure (kgm−1s−2) 
Pr Prandtl number 
Q flow rate (m3s−1) 
Qi, Qν, Qs flow rate of VF (m3s−1) 
t time (s) 
ti, tt, tts, tH transition time of SF under different regime (s) 
T temperature (K) 

T0 temperature of working fluid at initial time (K) 

u, v velocities in x- and y-directions (ms−1) 
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ui, uν, us velocity of SF under different regime (ms−1) 
vii, viν, vHi, vHH, vHν, vνi, 
vνν, vνH 

velocity of VF under different regime (ms−1) 

x, y coordinates in x- and y-directions (m) 
Greek symbols 
 nondimensional variables such as ε, p, u, t and x 

α  surface tension (Nm−1) 
αT temperature coefficient of surface tension (Nm−1K−1) 
β coefficient of thermal expansion (K-1) 
δ Dirac delta-function (m−1) 
δTi, δTν, δTs thickness of TBL under different regime (m) 
δν thickness of viscous boundary layer (m) 
Δ thickness of VF (m) 
Δii, Δiν, ΔHi, ΔHH, ΔHν, 
Δνi, Δνν, ΔνH 

thickness of VF under different regime (m) 

ΔT  temperature difference between two ends of surface (K) 

ε thickness of surface layer (m) 
κ  heat diffusivity (m2s−1) 
λ  heat conductivity (Wm−1K−1) 
ν viscosity (m2s-1) 
 density (kgm-3) 
τνi, τνHν, τHi, τνν, τHν, τHH transition time of VF under different regime (s) 

Ⅰ. INTRODUCTION 

A temperature gradient is common on liquid surface in nature and industrial systems, 
which induces a nonuniform surface tension on liquid surface in which the maximum 
tension can arise in the coldest region of the surface (αT = − dα/dT > 0, see Refs. 1, 2). 
Such a nonuniform tension may further "drag" the liquid flow, which is known as 
thermocapillary convection.3 Thermocapillary convection exists in many practical 
applications such as laser surface melting and alloying,4 the crystal fabrication,5 3D-
printing technology,6 the purification of carbon nanotubes7 and micromanipulation.8 

The study of thermocapillary convection has received increasing attention over the 
past decades.9, 10 Recently, thermocapillary convection in a shallow liquid film with two 
gas-liquid interfaces,11 a liquid bridge of various Prandtl numbers (Pr),12 a rectangular 
liquid cavity with an isothermal sidewall,13 a cylindrical liquid pool,14 a cylindrical cell 
with a bidirectional temperature gradient,15 an annular two-layer system,16 or a planar 
droplet17, 18 has been investigated using theory, simulation and experiment on the earth 
and in space. Further, more attention has been paid into the effect of gravity,19 
evaporation,20, 21 surface deformation,22 phase change,23 gas flow24 and instability on 
thermocapillary convection.25-27 

Many interests have also been devoted to thermocapillary convection in a rectangular 
side-heated top open cavity. The effect of gravity on thermocapillary convection has 
been studied for various liquids and geometry sizes by linear stability analysis,28 
numerical simulation29 and experiment.30 Thermocapillary convection could become 
unstable as the Marangoni number (Ma) increases.31 Additionally, the stability of 
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thermocapillary convection may also be dependent on Pr32 and the aspect ratio,33 and 
the transition route has been revealed in numerical simulation34 and the earth 
experiment.35 

Transient thermocapillary convection is common in nature and industry such as space 
melting and printing under microgravity.36 Therefore, dynamical and thermal 
characteristics of transient thermocapillary convection in a rectangular side-heated top 
opened cavity have received increasing attention in recent years.13, 37 It has been 
demonstrated that a thermal boundary layer (TBL) may form beside the heated 
sidewall.38 A surface flow (SF) driven by the thermocapillary force induced by the 
temperature gradient may occur,32, 37 and in turn a vertical flow (VF) may also appear 
owing to the pressure gradient.39 A series of possible transient flow scenarios and 
regimes of dynamics and heat transfer have been identified, and corresponding scales 
of the SF in the cavity have been obtained.13, 37 

The thermocapillary convection on an inclined plane with a linear temperature 

distribution has been investigated by e.g. Miladinova et al.,40 Mukhopadhyay and 

Mukhopadhyay,41 Chattopadhyay et al..42-44 Further, the thermocapillary convection 
induced by the surface with a linear temperature distribution is also common in e.g. a 
laser melting surface, as indicated in Ref. 45 and illustrated in Fig. 1. Moreover, the 
linear temperature distribution on the surface has also been successfully achieved in the 
experiment using a lamp and optical system and has been applied for the study of the 
Marangoni convective flow with a partially contaminated surface.46, 47 Unfortunately, 
dynamics and heat transfer of transient thermocapillary convection induced by the 
surface with a linear temperature distribution are unclear. However, it may be expected 
that when a linear temperature distribution is suddenly imposed on the surface as 
performed experimentally in Refs. 46, 47, a distinct stress may be generated on the 
surface and a thermal boundary layer also appears under the surface, which may in turn 
induce new dynamical and thermal regimes of transient thermocapillary convection 
compared to those induced by a sudden heated sidewall.13, 37 These motivate this study.  

In this study, a simple scaling analysis and two-dimensional simulation are adopted, 
as used in many previous works,13, 37, 38 to understand the physical mechanism of a 
transient laminar flow and obtain insights into the evolution of dynamics and heat 
transfer of transient thermocapillary convection in the cavity with a linear temperature 
distribution of the liquid surface. That is, the development of transient thermocapillary 
convection after sudden heating is described; the evolution of dynamics and heat 
transfer, dependent on e.g. Ma and Pr, is analyzed; the thickness and velocity of the SF 
and the VF are scaled under different regimes. Further, selected scaling laws are 
validated by numerical results. The scaling results may be used not only to quantify 
regimes of dynamics and heat transfer but also directly applied for the estimate of the 
transient fluid flow in e.g., laser melting, heat pipe and 3D-printing under 
microgravity.36 

The remaining parts of the paper are as follows: physical problem is described in Sec. 
Ⅱ, scaling analysis is performed in Sec. Ⅲ, numerical methods are described in Sec. Ⅳ, 
numerical results and validation are presented in Sec. Ⅴ, and finally, conclusions are 
summarized in Sec. Ⅵ. 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
8
7
6
0
8



Accepted to Phys. Fluids 10.1063/5.0187608

4 

 

Ⅱ. PROBLEM DESCRIPTION 

We considered a top-opened two-dimensional rectangular cavity, as illustrated in Fig. 
1. The width is in the x coordinate of L and the height in the y coordinate of H. 

 
 

FIG.1. Schematic of thermocapillary convection under a surface of a linear 
temperature distribution in a rectangular cavity. 

 

 

The lateral and bottom boundaries are assumed to be non-slip and adiabatic. The top 
boundary is a liquid-gas surface. Implicit in the analysis below is the assumption that 
the surface is flat.37 A linear temperature distribution in the x-direction is suddenly 
applied for the surface in which the temperature increases from T0 at the left side toward 
the right side. The temperature profile may be described as 

 0( ) = +  at ,T x T kx y H=  (1) 

where k is the temperature gradient factor, which means the temperature increase over 
the horizontal length: 

 
d ( )

= .
d

T x
k

x
 (2) 

In the study, k is considered to be positive. 
Transient thermocapillary convection in such a cavity may be described by the mass, 

momentum and energy equations, 

 + = 0,
u

x y

 
 

v
 (3) 

 

2 2

2 2

1
+ + = ,α

u u u p u u
u ν( ) F

t x y ρ x x y

     
− + + +

     
v  (4) 

 

2 2

2 2

1
( ),

p
u ν

t x y ρ y x y

     
+ + = − + +

     
v v v v v

v  (5) 

 

2 2

2 2
( ).

T T T T T
u κ

t x y x y

    
+ + = +

    
v  (6) 

Here, Fα denotes thermocapillary force on a surface layer, which may be written as49 
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1

,  1,
H

α T
H ε

T
F α δ δdy

ρ x −


= =

   (7) 

where δ is Dirac function, zero out of the surface layer. The thickness of the physical 
surface layer, denoted as ε, is a time-independent quantity that depends on the properties 
of the fluid, and is about tens of nanometers49 with fluctuations of only a few 
Angstroms.50  

The working fluid is incompressible Newtonian liquid with constant kinematic 
viscosity and thermal diffusivity. Note that the variations of density, viscosity and 
thermal diffusivity with the temperature change play vital role in instability analysis, as 
demonstrated by Mukhopadhyay et al.,51,52 Chattopadhyay et al.53,54 and Ji et al..55 
However, the variations are usually neglected in the study of a steady laminar flow,13, 

39 since the actual variations of e.g., Ma and Pr are small (smaller than 8% in e.g. silicon 
oil) in laminar thermocapillary convection. Initially, the fluid is stationary and 
isothermal at temperature T0. Boundary conditions in Fig. 1 are assumed as 

 0 at 0,  or 0, 0 at ,u x L y y H= = = = = =v v  

(8) 

 0 at 0,  and 0 at 0.
T T

x L y
x y

 
= = = =

 
 

Transient thermocapillary convection is governed mainly by Ma, Pr, A and Aε, which 
are given by 

 
Δ

,  ,  ,  ,T
ε

α TL ν H ε
Ma Pr A A

ρνκ κ L L
= = = =  (9) 

where ΔT is the temperature difference between the highest and lowest temperature on 
the surface (at the two ends of the cavity). In what follows, a scaling analysis will be 
applied to Eqs. (3)–(6) to obtain insights into transient laminar thermocapillary 
convection with the linear temperature distribution on the surface. 

Ⅲ. SCALING ANALYSIS 

A. Surface flow 

A linear temperature distribution in the x direction, when is suddenly applied for the 
surface of the fluid in a cavity,46, 47 may generate a nonuniform thermocapillary force 
in the surface layer, driving the fluid to the cold side. Further, as the momentum diffuses 
into the cavity by viscous, a horizontal viscous boundary layer, denoted by δν, may form 
below the surface layer, as shown in Fig. 1. Here, the surface layer and viscous 
boundary layer are hereinafter referred to as the SF. 

The SF may be analyzed using (4). It is clear that initially, the advective term is much 
smaller than the unsteady term. It is noticeable that the advective term is also smaller 
than the viscous term even over a long time as Pr > 1 for most liquids except for molten 
metal. Thus, the integral of (4) in the y direction on the surface layer, which means from 
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H-ε to H, is denoted as13, 56 

 ~ .T

ν

αu uε ν k
t δ ρ

+  (10) 

Since ε is very small, δν is approximately equal to the thickness of the SF.  

The viscous boundary layer is analyzed first to understand the dynamics of the SF. 
In the horizontal momentum equation (4), the unsteady term is approximately O(u/t), 
the advective term O(u2/L) and the viscous term O(νu/δν

2). Note that O(u2/L) is used to 
describe the advective term since the first and second advective terms in the momentum 
equations are on the same order according to the continuity equation. In the initial time, 
the advective term is much smaller than the unsteady term. Thus, the unsteady term 
balances the viscous term initially, giving the thickness of the viscous boundary layer, 

 
1 2 1 2 1 2~ ./ / /

νδ Pr κ t  (11) 

Based on (10), the unsteady term is O(uε/t) and the viscous term O(νu/δν). Thus, a 
time scale can be derived from such a balance, 

 
2 2

~ .ε
i

A L
t

Pr κ
 (12) 

This means that when t < ti, the SF is under an inertial regime for which the unsteady 
term balances the thermocapillary term, giving a velocity scale of the SF, 

 

2

3
~ .

i

ε

Ma Pr κ t
u

L A
 (13) 

When t > ti, the unsteady term in (10) is much smaller than the viscous term, and the 
SF is under a viscous regime; that is, the viscous term balances the thermocapillary 
term, which gives a new velocity of the SF, 

 
1 2 3 2 1 2

2
~ .

/ / /

ν
Ma Pr κ t

u
L

 (14) 

The viscous boundary layer grows with time until the cavity is occupied, which means 
δν ~ H. Substituting H into (10), a time scale can be obtained, 

 
2 2

~ .H

A L
t

Pr κ
  (15) 

That is, when t > tH, the viscous term for which the vertical length scale grows from δν 
to H can be express as νu/H. Further, for a sufficiently large time, the SF velocity under 
a δν ~ H viscous regime develops to a constant value,  

 ~ .
s

MaκA
u

L
 (16) 

The evolution of the SF velocity is summarized in Fig. 2, and is compared with those 
in isothermal and uniformly heated situations in Refs. 13 and 37 in the case of Ma = 
5000 and Pr = 20. Clearly, the dynamical regimes and velocity scales of the SF in this 

work are distinct from those in isothermal and uniformly heated situations. 
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FIG. 2. Evolutions of the SF velocity.13, 37  

 

B. Vertical flow 

As illustrated in Fig. 1, the SF generates a pressure gradient near the sidewall. 
Therefore, in the horizontal momentum equation (4), the balance is between the 
thermocapillary and pressure gradient terms. The integral of Eq. (4) in y direction from 
H – δν to H is denoted as 

 ~ ,T
ν
αp δ k

ρ ρ
 (17) 

where Δ is the thickness of a vertical boundary layer near the sidewall. Such a pressure 
rise near the sidewall may further drives a VF near the sidewall. The order of the 
pressure gradient in the vertical direction may be obtained, 

 
1

~ .
p p

ρ y ρ t


 v

  (18) 

Additionally, based on the conservation of mass, the flow rate may be obtained, 

 ~ ~ .νQ uδ v  (19) 

Notice that the velocity and in turn flow rate of the SF are different under different 
regimes, which may generate different flow rates of the VF. 

1. Viscous-inertial and inertial-inertial regimes 

As described in Sec. Ⅲ. A, the SF is initially governed by the inertial-thermocapillary 
balance. In fact, for most liquids, the transition time at which the viscous term becomes 
the same order as the unsteady term described by (12) is smaller than 10−9 s. Since the 
penetration distance of the VF may be scaled with O(vt), substituting (17) into (18), the 
vertical pressure gradient may be obtained as 

 

1 2 3 2

2 3 2

1
~ .

/ /

/

p Ma Pr κ
ρ y L t


 v


 (20) 

Clearly, the velocity scale of the SF governed by the thermocapillary-inertial balance 
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is ui, described by (13). Thus, the flow rate scale of the VF can be expressed as 

 

3 2 5 2 3 2

3
~ ~ .

/ / /

i i ν
ε

Ma Pr κ t
Q u δ

L A
 (21) 

For the VF, the order of the unsteady term in the vertical momentum equation (5) is 
O(v/t) and the viscous term is O(νv/Δ2). Using (18) and (21), a velocity scale and a 
thickness scale can be derived at which the viscous term equals to the vertical pressure 
gradient term, 

 

4 5 4 5 8 5 3 5

11 5 3 5
~ ,

/ / / /

νi / /

ε

Ma Pr κ t

L A
v  (22) 

 

1 5 7 10 9 10 9 10

4 5 2 5
~ .

/ / / /

νi / /

ε

Ma Pr κ t

L A
  (23) 

Clearly, in this stage, the SF is under the inertial regime. Thus, the regime for the VF is 
named as a viscous-inertial regime.  

In addition, based on (18) and (21), a balance between the unsteady and pressure 
gradient term derives velocity and thickness scales of the VF under an inertial-inertial 
regime, 

 

2 3 2 3 4 3 1 3

3 5 1 3
~ ,

/ / / /

ii / /

ε

Ma Pr κ t

L A
v  (24) 

 

1 3 5 6 7 6 7 6

4 3 2 3
~ .

/ / / /

ii / /

ε

Ma Pr κ t

L A
  (25) 

Based on (22) to (25), a time scale can be derived at which the viscous term equals to 
the unsteady term, 

 
2

1 2 1 2
~ .ε

ν /i /
τ L A

Ma Pr κ
 (26) 

This means that the viscous dominance changes to the inertial dominance at the time 
scaled with (26) for the VF. 

It is clear that the ratio of τνi to ti is Pr1/2/(Ma1/2Aε) based on (12). Thus, the VF near 
the sidewall rises under the viscous-inertial regime when t < ti for Pr/Ma > Aε

2, but 
under the viscous-inertial regime when t < τνi and under the inertial-inertial regime when 
τνi < t < ti for Pr/Ma < Aε

2 (τνi < ti). 

2. vt ≥ H inertial-inertial regime 

As time elapses, the penetration depth vt of the VF reaches H. It can be demonstrated 
that the VF cannot reach the bottom wall before the viscous dominance changes to the 
inertial dominance. Using (24), the VF under the inertial-inertial regime reaches the 
bottom wall in a time scale, 
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2 3 4 1 4

1 2 1 2
~ .

/ /

ε
Hi / /

L A Aτ
Ma Pr κ

 (27) 

According to (12), τHi/ti ∼ Pr1/2A3/4/(Ma1/2Aε
7/4). Since Pr/Ma > Aε

7/2/A3/2, τHi > ti. Thus, 
when the VF reaches the bottom wall, the VF will enter a new stage, which is named as 
a vt ≥ H inertial-inertial regime. 

Under the vt ≥ H inertial-inertial regime, the penetration depth of the VF is H, and 
then the scale of the vertical pressure gradient over H can be obtained, 

 

1 2 3 2

3 1 2

1
~ .

/ /

/

p Ma Pr κ
ρ y L At


−




 (28) 

Repeating the discussion of (22) to (25), based on (28), the velocity scale and the 
thickness scale can be derived by the equivalent of the inertial term and the vertical 
pressure gradient term, 

 

2

3 1 2 1 2
~ ,

Hi / /

ε

Ma Pr κ t

L A A
v  (29) 

 

1 2 1 2 1 2 1 2

1 2
~ .

/ / / /

Hi /

ε

Pr κ A t

A
  (30) 

Note that due to usually A > Aε,13 the inertial term is larger than the viscous term under 
the vt ≥ H inertial-inertial regime until the viscous boundary layer reaches bottom wall 

3. Viscous-viscous and inertial-viscous regimes 

The SF is under a viscous regime when t > ti. Thus, the volumetric flow rate of the 
SF is scaled with 

 
2

2
~ ~ .ν ν ν

Ma Pr κ t
Q u δ

L
 (31) 

Repeating the discussion of (22) to (25), based on (31), the velocity and the thickness 
of the VF under a viscous-viscous regime can be obtained, 

 
4 5 1 2 13 10 3 10

8 5
~ .

/ / / /

νν /

Ma Pr κ t

L
v  (32) 

 
1 5 1 2 7 10 7 10

2 5
~ ,

/ / / /

νν /

Ma Pr κ t

L
  (33) 

and under an inertial-viscous regime, 

 
2 3 1 2 7 6 1 6

4 3
~ ,

/ / / /

iν /

Ma Pr κ t

L
v  (34) 

 
1 3 1 2 5 6 5 6

2 3
~ .

/ / / /

iν /

Ma Pr κ t

L
  (35) 
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Based on (32) to (35), the equivalent of the unsteady term and the viscous term yields 
a time scale, 

 
2

~ .νν
Lτ

Ma κ
 (36) 

That is, (36) is the time scale of the transition between viscous and inertial dominances.  

4. vt ≥ H inertial-viscous regime 

Consider the VF near the sidewall. The time scale for which vt ∼ H under a viscous 
dominance can be given by 

 
2 10 13

8 13 5 13
~ .

/

νHν / /

L Aτ
Ma Pr κ

 (37) 

But the time scale under an inertial dominance can be expressed as 

 
2 6 7

4 7 3 7
~ .

/

Hν / /

L Aτ
Ma Pr κ

 (38) 

Clearly, there is τνν < τνHν < τHν < tH for Pr/Ma < A2, implying that the VF does not 
penetrate through the entire cavity before the balance changes from between the 
pressure gradient term and the viscous term to between the pressure gradient term and 
the unsteady term at the time scale τνν. That is, the VF may develop to the bottom of the 

cavity under the inertial dominance at the time scale τHν, at which time the thickness of 

the viscous boundary layer has not become H.  

Considering both Eqs. (28) and (31), the equivalent between the unsteady term and 

the pressure gradient term yields the velocity and the thickness of the VF, 

 
3 4 7 4 3 4

5 2 1 2
~ ,

/ / /

Hν / /

Ma Pr κ t

L A
v  (39) 

 
1 4 1 2 1 2 1 4 1 4~ ./ / / / /

Hν Pr A L κ t  (40) 

We can also obtain the velocity and thickness scales under a balance between the 
viscous term and the pressure gradient term. It is worth noting that the time scale for 
which the viscous boundary layer reaches the bottom of the cavity equals to the one for 
which viscous and inertial terms balance. This means that the vt ≥ H inertial-viscous 
regime changes to the vt ≥ H and δν ~ H viscous-viscous regime at the time scale tH. 

5. δν ~ H viscous-viscous regime 

For Pr/Ma > A2, we have tH < τHν < τνHν < τνν. That is, the VF does not penetrate 
through the entire cavity before the thickness of the viscous boundary layer becomes H 

because of tH < τHν. Further, because of tH < τνν, the VF is continuously dominated under 
a balance between pressure gradient and viscous terms until the viscous boundary layer 
reaches the bottom of the cavity.  

If δν ∼ H, the vertical pressure gradient term may be obtained as 
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2

3

1
~ .

p Ma Pr κ
ρ y L A t


−

 v


 (41) 

Substituting us into Eq. (19), the flow rate is estimated by 

 
2~ ~ .

s s
Q u H MaκA  (42) 

Based on Eqs (19), (41) and (42), the velocity and thickness of the VF can be derived 

by the equivalent between the pressure gradient and viscous terms, 

 
4 5 4 5

3 5 1 5
~ ,

/ /

νH / /

Ma κ A

L t
v  (43) 

 
1 5 1 5 3 5 1 5~ ./ / / /

νH Ma κ AL t  (44) 

In addition, it may be proved that when t > tH for Pr/Ma > A2, the VF is continuously 
dominated by the balance between pressure gradient and viscous terms. Further, the 
time scale at which the VF reaches the bottom of the cavity is estimated by, 

 
2

~ .
HH

Lτ
Maκ

 (45) 

6. vt ≥ H and δν ~ H viscous-viscous regime 

It is clear that the penetration depth of the VF is H under the vt ≥ H and δν ~ H 
viscous-viscous regime, the pressure gradient term is estimated by 

 

2

4 2

1
~ .

p Ma Pr κ
ρ y L A


−




 (46) 

Further, based on Eqs. (42) and (46), the velocity and thickness of the VF are scaled 
with 

 ~ ,
HH

MaκA
L

v  (47) 

 ~ .
HH

AL  (48) 

In fact, it can be demonstrated that the viscous term is always greater than the inertial 
term under the vt ≥ H and δν ~ H the viscous-viscous regime. 

In addition, according to different time scales, four possible evolution scenarios of 
the VF may be summarized and are plotted in Table Ⅰ and Fig. 3. 

 

TABLE Ⅰ. VF under different regimes in different evolution scenarios. 

Evolution scenario Time Velocity Regime 

VF I 
Pr/Ma < 

Aε7/2/A3/2 
t < τνi 

4 5 4 5 8 5 3 5

11 5 3 5
~

/ / / /

νi / /

ε

Ma Pr κ t

L A
v  Viscous - inertial 
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τνi < t < τHi 

2 3 2 3 4 3 1 3

3 5 1 3
~

/ / / /

ii / /

ε

Ma Pr κ t

L A
v  Inertial - inertial 

τHi < t < ti 

2

3 1 2 1 2
~

Hi / /

ε

Ma Pr κ t

L A A
v  vt ≥ H inertial - inertial 

ti < t < tH 

3 4 7 4 3 4

5 2 1 2
~

/ / /

Hν / /

Ma Pr κ t

L A
v  vt ≥ H inertial - viscous 

t > tH ~
HH

MaκA
L

v  
vt ≥ H viscous - δν ~ H 

viscous  

VF II 
Aε7/2/A3/2 < 

Pr/Ma < Aε2 

t < τνi 

4 5 4 5 8 5 3 5

11 5 3 5
~

/ / / /

νi / /

ε

Ma Pr κ t

L A
v  Viscous - inertial 

τνi < t < ti 

2 3 2 3 4 3 1 3

3 5 1 3
~

/ / / /

ii / /

ε

Ma Pr κ t

L A
v  Inertial - inertial 

ti < t < τνν 

4 5 1 2 13 10 3 10

8 5
~

/ / / /

νν /

Ma Pr κ t

L
v  Viscous - viscous 

τνν < t < τHν 

2 3 1 2 7 6 1 6

4 3
~

/ / / /

iν /

Ma Pr κ t

L
v  Inertial - viscous 

τHν < t < tH 

3 4 7 4 3 4

5 2 1 2
~

/ / /

Hν / /

Ma Pr κ t

L A
v  vt ≥ H inertial - viscous 

t > tH ~
HH

MaκA
L

v  
vt ≥ H viscous - δν ~ H 

viscous 

VF III 
Aε2 < Pr/Ma < 

A2 

t < ti 

4 5 4 5 8 5 3 5

11 5 3 5
~

/ / / /

νi / /

ε

Ma Pr κ t

L A
v  Viscous - inertial 

ti < t < τνν 

4 5 1 2 13 10 3 10

8 5
~

/ / / /

νν /

Ma Pr κ t

L
v  Viscous - viscous 

τνν < t < τHν 

2 3 1 2 7 6 1 6

4 3
~

/ / / /

iν /

Ma Pr κ t

L
v  Inertial - viscous 

τHν < t < tH 

3 4 7 4 3 4

5 2 1 2
~

/ / /

Hν / /

Ma Pr κ t

L A
v  vt ≥ H inertial - viscous 

t > tH ~
HH

MaκA
L

v  
vt ≥ H viscous - δν ~ H 

viscous 
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VF IV Pr/Ma > A2 

t < ti 

4 5 4 5 8 5 3 5

11 5 3 5
~

/ / / /

νi / /

ε

Ma Pr κ t

L A
v  Viscous - inertial 

ti < t < tH 

4 5 1 2 13 10 3 10

8 5
~

/ / / /

νν /

Ma Pr κ t

L
v  Viscous - viscous 

tH < t < τHH 

4 5 4 5

3 5 1 5
~

/ /

νH / /

Ma κ A

L t
v  Viscous - δν ~ H viscous  

t > τHH ~
HH

MaκA
L

v  
vt ≥ H viscous - δν ~ H 

viscous 

 

C. Thermal boundary layer 

It may be expected that when a linear temperature distribution is suddenly applied 
for the surface, heat may be transferred into the fluid in the cavity by conduction, 
resulting in a horizontal TBL beneath the surface. The energy equation (6) may describe 
heat transfer between the surface and the interior fluid. The unsteady term, convection 
term and conductive term in Eq. (6) are approximately O(ΔT/t), O(vΔT/H) and 
O(κΔT/δT

2), respectively, where δT is the thickness of the TBL. Clearly, for a sufficiently 
small time, the convective term is negligible in comparison with the conductive term. 
That is, there is a balance mainly between the unsteady term and the conductive term, 
yielding a scale for the thickness of the TBL, 

 
1 2 1 2~ ./ /

Ti
δ κ t  (49) 

The SF may horizontally convect heat away. As time goes on, the convective term 
becomes larger and even exceeds the unsteady term. For t < ti, if the ratio of convective 
to unsteady terms is unity, a time can be obtained, 

 
1 2 2

1 2 1 2
~ .

/

ε
t / /

A L
t

Ma Pr κ
  (50) 

 

FIG. 3. Regimes of VF (in VFs I-IV). 
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Clearly, ti < tt for Pr/Ma > Aε
3, but ti > tt for Pr/Ma < Aε

3. Since usually Aε < 10−5 (see, 
e.g., Ref. 13). and in case of Ma > 106, instability or even chaos may occur in 
thermocapillary convection,49, 57, 58 the case for only Pr/Ma > Aε

3 is considered in this 
study. 

For t > ti, over the velocity scale uν, the above comparison yields a new time scale 
for the switch from the unsteady-conductive balance to the convective-conductive 
balance, which is given by 

 
2

3 2 1 3
~ .t / /

L
t

Ma Pr κ
 (51) 

Based on (51), there exist tt < tH for Pr/Ma < A3 but tH < tt for Pr/Ma > A3. Accordingly, 
in what follows, the evolution scenarios with different regimes will be analyzed. 

In the evolution scenario for Pr/Ma < A3 (tt < tH), the transition from the unsteady-
conductive balance to the convective-conductive balance occurs before the viscous 
boundary layer reaches the bottom wall. 

When t < tt, the convective term O(uk) is insignificant in comparison with the 
unsteady term O(ΔT/t) in the energy equation (6), and the TBL develops under the 
balance of unsteady and conductive terms with a thickness scale of δTi in (49). 

The convective term becomes large and the unsteady term may be negligible when tt 
< t < tH. The SF moves with a velocity of uν under a balance between thermocapillary 
and viscous terms. A thickness scale can be derived by the energy balance between 
convective and conductive terms, 

 
3 2

1 2 1 4 1 4 1 4
~ .

/

Tν / / / /

Lδ
Ma Pr κ t

  (52) 

When t > tH, the thermocapillary term is balanced by the viscous term for which δν 
grows to H with a velocity scale of us (10). Inserting us into the energy equation (6), a 
thickness scale is obtained, 

 1 2 1 2
~ .

Ts / /

Lδ
Ma A

 (53) 

This means that the TBL reaches the steady stage and the thickness remains constant. 
Moreover, it may be verified that the TBL will reach the steady state before the viscous 
layer reaches the bottom of the cavity for Pr/Ma < A3 due to tt < tH.  

Heat transfer between the SF and the interior fluid may be scaled with O(λΔT/δT), 
where λ denotes thermal conductivity. Further, the Nusselt number (Nu) for Pr/Ma < A3 

may be obtained by normalizing the heat flux using λΔT/H based on (49), (52) and (53), 
respectively, 

 

1 2 1 2

1 2 1 4 1 4 1 4

1 2

1 2 1 2

, 0 ,

~ , ,

, 

t/ /

/ / / /

t H/

/ /

H

L
t t

κ t

Ma Pr κ t
Nu t t t

L

Ma A t t .

  

  

 



 (54) 
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In the evolution scenario for Pr/Ma > A3, we have tH < tt. That is, the viscous 
boundary layer fills the cavity with the velocity scale of us before the convective term 
becomes dominant. Further, based on the energy equation (6), a balance between the 
inertial term and the convective term yields a time scale, 

 
2

~ .
ts

L
t

MaAκ
 (55) 

Since convection is very weak when t < tts, the TBL grows as time increases in which 
the inertial-conductive balance dominates the SF with a thickness scale (49). When t > 
tts, the TBL maintains a constant thickness (53). 

It is noteworthy that the TBL is distinct when only δT < H, which yields a criterion, 

 3

1
> .Ma

A
 (56) 

That is, the TBL is distinct if (56) is satisfied. Further, based on (49) and (53), heat 
transfer through the SF for Pr/Ma > A3 may be expressed as 

 
1 2 1 2

1 2 1 2

, 0 ,
~

, .

ts/ /

/ /

ts

L
t t

Nu κ t

Ma A t t

  

 

 (57) 

The evolution scenarios of the horizontal TBL with the thickness scales under 
different regimes are presented in Table Ⅱ. Further, the thickness is also shown in Fig. 
4 under different regimes for Pr/Ma < A3 and Pr/Ma < A3. Evolution scenarios of the 
TBL and VF are shown in the Ma–Pr–A space in Fig. 5.  

 

 

TABLE Ⅱ. Thickness of TBL under different regimes in different evolution scenarios. 

Evolution scenario Time Thickness Regime 

TBL I Pr/Ma < A3 

t < tt 
1 2 1 2~ / /

Ti
δ κ t  Inertial-conductive 

tt < t < tH 

3 2

1 2 1 4 1 4 1 4
~

/

Tν / / / /

Lδ
Ma Pr κ t

 Viscous-convective 

t > tH 
1 2 1 2

~
Ts / /

Lδ
Ma A

 δν ~ H viscous-convective 

TBL II Pr/Ma > A3 

t < tts 
1 2 1 2~ / /

Ti
δ κ t  Inertial-conductive 

t > tts 1 2 1 2
~

Ts / /

Lδ
Ma A

 δν ~ H viscous-convective 
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(a)  

 
 

 

(b) 
  

FIG. 4. Thickness of TBL for Ma = 5000 in two evolution scenarios. Here, ts = tH in 
(a), given by Eq. (15) in TBL I for Pr/Ma < A3, but ts = tts in (b), given by Eq. (51) in 

TBL II for Pr/Ma > A3. 

   

FIG. 5. Evolution scenarios of TBL and VF in Ma-Pr-A space. Here, S1: Pr = 
MaAε

7/2/A3/2, S2: Pr = MaAε
2, S3: Pr = MaA3, and S4: Pr = MaA2. 

Ⅳ. NUMERICAL METHOD 

2D numerical simulation may be used to characterize transient thermocapillary 
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convection, since the two-dimensional numerical results of the thermocapillary 
convective flow agrees well with the experimental ones.48, 59 For convenience, the 2D 
governing equations (3)–(6) were simplified to non-dimensional forms by x/x, y/y, 
δ/δ and ε/ε ∼ L, t/t ∼ L2/(Maκ), T ∼ (T − T0)/ΔT, u/u and v/v ∼ Maκ/L and p/p ∼ 
ρMa2κ2/L2, as described in Ref. 13. 

Figure 6 illustrates the computational domain and boundary conditions. The top 
boundary was at a linear temperature distribution and imposed by a constant Marangoni 
stress. The other wall boundaries of the computational domain were considered to be 
adiabatic and no slip. All boundaries were considered to be rigid. Initially, the fluid in 
the domain was motionless and isothermal at a zero non-dimensional temperature. 
Previous studies13, 37 have demonstrated that thermocapillary convection in a 
rectangular cavity can be described well by the numerical simulations with Marangoni 
stress on the non-deformable flat surface. 

 

 

The numerical method to solve governing equations has been described and 
experimentally verified in previous studies.13, 37 Since there is no experimental result of 
transient thermocapillary convection in a rectangular pool under a surface of a linear 
temperature distribution in the literature, the further verification with the experiment 
has not been conducted in this study.  

Four different meshes were used for the mesh sensitivity test with finer cells toward 
the surface and boundaries. For example, the computational cells expand vertically at a 
fixed rate toward the bottom of the cavity from the size 1×10-5, 8×10-6, 4×10-6 and 
2.5×10-6 to the size 4×10-5, 2×10-5, 2×10-5 and 1×10-5, respectively.  

The largest Marangoni number of Ma = 250000 in the present numerical cases was 
adopted in the mesh sensitivity test. The numerical results show that the flow in this 
study is steady for Ma  250000 and even low Prandtl number (e.g., =10), which is 
different from that in a cavity with the isothermal lateral wall (also see Ref. 13). The 
results have been listed in TABLE Ⅲ. To ensure the accuracy of numerical results and 
to keep the computing cost, a mesh of 100 × 300 was used in this study for which the 
velocity and temperature difference calculated with a finer mesh was less than 3%.  

 

   

FIG. 6. Schematic of boundary conditions in the computational domain. 

TABLE Ⅲ. Mesh dependency test. 

A Ma Mesh H × L 
Steady u at fixed point 

(0.5, 0.5A) (%) 
Steady T at fixed point 

(0.8, 0.9A) (%) 
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In fact, the numerical results obtained using the present procedures were compared 
with the experimental results in Ref. 13 in which two types of results are consistent. 
That is, the present procedures are applied for the description of thermocapillary 
convection in the cavity.  

Ⅴ. NUMERICAL RESULTS AND VALIDATION 

To present the physics of transient thermocapillary convection flows under different 
regimes and validate the scaling relations derived from Sec. Ⅲ, 2D numerical 
simulation was conducted for a fixed aspect ratio (A = 0.2) but for Pr from 2 to 2×103 
(corresponding to silicone oils from 0.65cs to 200cs) and Ma from 2500 to 250000, 
which cover all regimes.  

A. Flow structure 

Figure 7 plots the streamlines and isotherms for Ma = 2500. In a short time after 
sudden heating, the isotherms are approximately parallel to each other owing to heat 
conduction, as shown in Fig. 7(a). As time goes, the thickness of the TBL increases and 
the isotherms slightly contorts in the right corner, as shown in Fig. 7(b). As time 
increases further, the region occupied by the hotter fluid continuously enlarges from the 
right top corner to the left bottom corner, as shown in Figs. 7(c) and 7(d). Additionally, 
the streamlines in Fig. 7 shows that there exists a distinct large circulation driven by the 
thermocapillary force. However, the further examination of numerical results shows 
that transient thermocapillary convection is still weak under conduction dominance for 
such a small Ma. 

 

(a) 
 

(b) 

 

(c) 
 

(d) 

 

 

FIG. 7. Streamlines and isotherms from 0.1 to 0.9 with an interval between two 
neighbouring isotherms being 0.08 at different times for Pr = 200 and Ma = 2500. (a) At 

t/tts=0.14. (b) At t/tts=0.85. (c) At t/tts=3.61. (d) At t/tts=57.30. 

1/5 250000 50×150 0.010244801(10.55%) 0.34820(6.19%) 

1/5 250000 71×210 0.010605483(7.39%) 0.35058(5.54%) 

1/5 250000 100×300 0.011452625 0.37116 

1/5 250000 200×600 0.011403985(0.42%) 0.36023(2.94%) 
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As Ma increases, convection becomes stronger. Figure 8 shows the streamlines and 
isotherms for Ma = 250000. The SF is distinct and drives a VF, as shown in Fig. 8(a). 
Further, a back flow from the left to the right becomes stronger with time and a 
circulation is clear in the cavity, as shown in Fig. 8(b). As time goes, the circulation 
develops until the developed stage, as shown in Figs. 8(c)-(f). Moreover, it is clear that 
the symmetry of the circulation about the vertical middle line is lost with increase of 
the Ma, as shown in Figs. 7 and 8.  

 

(a) 
 

(b) 
 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

 

FIG. 8. Streamlines and isotherms from 0.1 to 0.9 with an interval between two 
neighbouring isotherms being 0.08 at different times for Pr = 200 and Ma = 250000. (a) At 
t/tH= 0.95. (b) At t/tH=3.71. (c) At t/tH=5.29. (d) At t/tH=8.13. (e) At t/tH=16.03. (f) 

At t/tH=110.76.  

B. Verification of scaling laws 

According to the analysis in Sec. Ⅲ, by sudden heating the surface with a linear 
temperature distribution, a SF can be generated under a thermocapillary force. The 
velocity of the SF may be different under different regimes. For validation of the scaling 
law (14) under viscous regime, the velocity for the SF was extracted at x = 0.5 and y 
= A. Here, the non-dimensional format is adopted (also for all following figures). Figure 
9 shows the velocity normalized by (14). A good linear correlation between uνA-1 and 
(t/tH)1/2 can be distinguished, indicating that the scaling law (14) is verified.  

 

 

 

 

FIG. 9. Velocity of SF under viscous regime. 
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For a sufficiently large time, the velocity of the SF becomes constant, as indicated in 
(16). To validate the velocity scale of (16), the velocity was calculated at x = 0.5 and 
y = A on the surface. According to (16), the normalized velocity us is independent of 
Ma, which may be found in Fig. 10. This confirms that the scaling prediction (16) is 
working.  

 
 

 

 

FIG. 10. Velocity of SF under δν ~ H viscous regime. 
 

 

As described above, a VF near the sidewall may be generated by the pressure gradient 
induced by the SF. The analysis in Sec. Ⅲ. B shows that the VF may travel at different 
velocity scales under different regimes. When τHν < t < tH, the VF travels at a velocity 
of (39) under the vt ≥ H inertial-viscous regime in VFs I-III. In simulation results, the 
velocity of the VF is measured by the maximum vertical velocity at y∗= 0.5A. Figure 11 
shows the velocity of the VF normalized by (39). A good linear correlation between 
vHνA−1 and (t/ tH)3/4 can be distinguished, suggesting that the scaling prediction is able 
to predict the VF under the vt ≥ H inertial-viscous regime in VFs I-III. However, it is 
clear that data slightly scatter as time increases owing to the presence of the bottom 
wall. 

 

 

In order to verify the velocity of the VF under the vt ≥ H and δν ~ H viscous- viscous 
regime in VFs I-IV, the maximum vertical velocity at y = 0.5A was measured. Figure 
12 shows the velocity of the VF normalized by (47). Clearly, the velocity is independent 
of Ma, indicating that the scaling law (47) can describe the VF under the vt ≥ H and δν 
~ H viscous-viscous regime.  

   

FIG. 11. Velocity of VF under vt ≥ H inertial-viscous regime in VFs I-III. 
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For validation of the scaling law (40), we also measured the thickness of the VF 
under the vt ≥ H inertial-viscous regime in VFs I-III based on the numerical solutions, 
defined as the horizontal distance from the left wall to the interior edge of the VF for 
which v = 0.0004 at y = 0.5A. The numerical results are plotted in Fig. 13. It is seen 
from this figure that ΔHνA−1 is proportional to (t/tH)1/4, which confirms the scaling law 
(40). 
 

 

 

  

FIG. 13. Thickness of VF under vt ≥ H inertial-viscous regime in VFs I-III. 

 

 

As time goes on, the thickness of the VF becomes a constant, which is independent 
of Ma, as described by (48). Figure 14 shows ΔHH extracted from numerical results. 
The thickness predicted in (48) is independent of Ma, which confirms the scaling 
prediction in (48). Here, the thickness for Ma = 5000 and 8000 slightly deviates the 
scaling prediction because there is the circulation flow in the cavity. 

 
 
 

  

 

 

 

FIG. 12. Velocity of VF under vt ≥ H and δν ~ H viscous-viscous regime in VFs I-IV. 
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FIG. 14. Thickness of VF under vt ≥ H and δν ~ H viscous-viscous regime in VFs I-
IV. 

 

Scaling analysis indicates that as soon as the linear temperature distribution is applied, 
heat transfer can occur, resulting in the formation of a TBL beneath the top boundary, 
as scaled with (49). The thickness of the TBL in numerical results was measured as the 
length from surface to the isotherm of T = 0.3 at x = 0.5, at which the disturbance 
from the circulation of the convective flow may be reduced.13 To validate (49), the 
thickness was calculated from numerical results in TBLs I and II, respectively. Figure 
15 shows the thickness and time normalized by (49). Clearly, δTiMa1/3A1/6 has a clear 
linear function of (t/tt)1/2 and δTiMa1/2A1/2 has a perfect linear function of (t/tts)1/2 
under the inertial-conductive regime in TBLs I and II, respectively, implying that the 
proposed scaling law (49) is confirmed.  

 

(a)  

 

 

 

(b) 
  

FIG. 15. Thickness of TBL under inertial-conductive regime in TBLs I (a) and II (b).  

 

To validate the thickness scale (52), the normalized thickness under the convective-
viscous regime in TBL I was measured from numerical results and is plotted in Fig. 16. 
Clearly, δTνMa1/2A1/2 is proportional to (t/tH)-1/4, suggesting that the scaling law (52) 
may describe the thickness scale under convective-viscous regime in TBL I.  
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FIG. 16. Thickness of TBL under viscous-convective regime in TBL I. 

 

During the unsteady stage, the thickness of the TBL may change as time elapses, as 
precited by the scale of (49) and (52). Further, the scaling analysis shows that the TBL 
may reach the steady stage with a constant thickness in both TBLs I and II, which is 
described by the scale of (53). To verify (53), the thickness of TBL under the δν ~ H 
viscous-convective regime was measured. As seen from Fig. 17, there is an 
approximately linear relation of δTsA1/2 and Ma−1/2. Generally, there is agreement 
between the scaling prediction in (53) and numerical results. Note that the thickness 
for Ma = 8000 deviates the scaling prediction because the circulation flow adjacent to 
the sidewall disturbs. 

 
   

FIG. 17. Thickness of TBL under δν ~ H viscous-convective regime in TBLs I and II. 

 

Heat transfer near the surface can be quantified by the Nusselt number Nu, which is 
predicted in (54). To verify (54), the Nusselt number of the surface with the linear 
temperature distribution was calculated from the numerical results. Figure 18 shows the 
Nusselt number in unsteady stage. Clearly, there is a perfect linear relation between 
NuMa−1/2A−1/2 and (t/tt)1/2, which confirms the scaling law of heat transfer (54) under 
the inertial-conductive regime in TBL I well. 

 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
8
7
6
0
8



Accepted to Phys. Fluids 10.1063/5.0187608

24 

 

 
 

  

FIG. 18. Nusselt number of the surface with linear temperature distribution under 
inertial-conductive regime in TBL I. 

 

Furthermore, the Nusselt number of the surface with the linear temperature 
distribution in the steady stage Nu was also measured and is plotted in Fig. 19. There is 
a good linear relation between Nu and Ma1/2A1/2, which further verifies (54) and (57) 
under the δν ~ H viscous-convective regime in TBLs I and II.  

 
 

 

 

 

FIG. 19. Nusselt number of the surface with linear temperature distribution under δν ~ 
H viscous-convective regime in TBLs I and II. 

Ⅵ. CONCLUSIONS 

A discussion based on scaling analysis and numerical simulations for transient 
thermocapillary convection under a surface of a linear temperature distribution in a 
rectangular cavity at a zero-gravity condition is presented. A set of scaling laws of 
velocity and thickness has been derived by scaling analysis to describe heat transfer and 
dynamics of thermocapillary convection under different regimes in different evolutions. 
The scaling relationships describe very complex interactions between the SF, VF, TBL 
and viscous boundary layer in the cavity.  

Further, 2D numerical simulation has been performed to characterize the physics of 
transient flow and to verify representative scaling relations. The velocity and thickness 
of the SF and VF, and the Nu of the surface measured from numerical results are in 
accord with scaling predictions. Therefore, the present scaling results may describe the 
transient thermocapillary convection flows induced by a surface of a linear temperature 
distribution, and in turn estimate the flow and heat transfer (e.g., the velocity of the SF 
uv ~ MaPr1/23/2t1/2/L2, the Nusselt number of the surface Nu ~ Ma1/2A1/2) in industrial 
applications. 
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