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Abstract—Many real-world problems involve the recovery of a
matrix from linear measurements, where the matrix lies close
to some low-dimensional structure. This paper considers the
problem of reconstructing a matrix with a simultaneously sparse
and low-rank model. As surrogate functions of the sparsity
and the matrix rank that are non-convex and discontinuous,
the ℓ1 norm and the nuclear norm are often used instead
to derive efficient algorithms to promote sparse and low-rank
characteristics, respectively. However, the ℓ1 norm and the
nuclear norm are loose approximations, and furthermore, recent
study reveals using convex regularizations for joint structures
cannot do better, orderwise, than exploiting only one of the
structures. Motivated by the construction of nonconvex and
nonseparable regularization in sparse Bayesian learning, a new
optimization problem is formulated in the latent space for
recovering a simultaneously sparse and low-rank matrix. The
newly proposed nonconvex cost function is proved to have the
ability to recover a simultaneously sparse and low-rank matrix
with a sufficient number of noiseless linear measurements. In
addition, an algorithm is derived to solve the resulting non-convex
optimization problem, and convergence analysis of the proposed
algorithm is provided in the paper. The performance of the
proposed approach is demonstrated by experiments using both
synthetic data and real hyperspectral images for compressive
sensing applications.

I. INTRODUCTION

MATRIX reconstruction from a small number of linear
measurements is at the center of many modern signal

processing applications such as compressed sensing (CS) [1],
[2] and matrix completion [3], [4]. If the matrix is arbitrary,
there is indeed little we can do in this context. By making some
assumptions about the matrix structure, then we can make
some progress. For instance, we can assume the matrix has
a low rank or sparse entries by applying some transformation.
The core idea is that the number of degrees of freedom should
be smaller than the number of entries in a “meaningful”
discrete signal.

In various applications in signal processing and machine
learning, the matrix of interest is known to have several
structures at the same time [5]. One interesting assumption
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for matrices, which has been extracting much attention in the
past years, is the simultaneously sparse and low-rank model.
This simultaneously structured model has been exploited for
instances in sub-wavelength optical imaging [6], hyperspectral
image unmixing [7], [8] and feature coding [9].

Mathematically, the problem of recovering a simultaneously
sparse and low-rank matrix from noiseless linear measure-
ments can be described as

min
X

α∥X∥0 + (1− α)∥X∥rank

s.t. A[X] = y,
(1)

where X ∈ Rn×m is the unknown matrix, A : Rn×m → Rp is
a linear mapping, y ∈ Rp is a vector of measurements, and 0 ≤
α ≤ 1. Here ∥X∥0 denotes the matrix ℓ0 “norm” that counts
the number of nonzero entries in X, and ∥X∥rank denotes the
matrix rank. The low-rank model and the sparse model capture
the characteristics of the matrix from different perspectives.
For a matrix with rank r < min{n,m}, the number of degrees
of freedom is (n+m)r− r2, while the number of degrees of
freedom of a k (k < nm) sparse matrix is k. On the other
hand, let X be a rank r matrix whose entries are zero outside
a k1 × k2 submatrix. The number of degrees of freedom of
the simultaneously sparse and low-rank matrix is only (k1 +
k2)r − r2. Therefore, it is expected that a smaller number
of measurements is required to successfully reconstruct X by
exploiting the joint structure.

Unfortunately, the non-convexity and discontinuous nature
of the ℓ0 “norm” and the rank function make the problem
(1) challenging to solve. Efficient procedures developed in
literature to deal with the sparse model and the low rank model
mostly rely on convex relaxation, where the ℓ0 “norm” and
the rank function are replaced by the ℓ1 norm and the nuclear
norm (i.e., the sum of singular values) [4], [10], respectively.
Then a convex optimization problem can be posed as

min
X

α∥X∥1 + (1− α)∥X∥∗

s.t. A[X] = y,
(2)

where ∥X∥∗ denotes the nuclear norm. If the true X is
sparse and low-rank, improved reconstruction performance
via solving (2) has been observed in various scenarios [7]–
[9], in comparison to only considering the sparse model or
the low rank model. However, a recent study [5] reveals a
fundamental limitation in the formulation (2) that exploit-
s convex regularization with random linear measurements.
Specifically, it shows that using convex regularization for
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joint structures can do no better, orderwise, than exploiting
only one of the structures. For the case of simultaneously
sparse and low-rank matrices, Oymak et al. prove that by
using a nonconvex formulation, X can be recovered from
O(r(k1 + k2) log n) measurements1, which is much smaller
than the convex formulation combining the ℓ1 norm and the
nuclear norm [5].

Despite the attractive property of nonconvex regularization
for the simultaneous sparse and low-rank model, there exist
many sub-optimal local minima where optimization algorithms
could be trapped. One popular nonconvex regularization for
the sparse model is the ℓp pseudo-norm (0 ≤ p < 1) [11], [12].
As an equivalent of the ℓp pseudo-norm for matrix, a smooth
Schatten-p function is exploited to approximate the matrix
rank in [13]. The ℓp pseudo-norm and many other penalty
functions developed in literature have a common separable
property, meaning a transformation of the function can be
decomposed2 as f(z) =

∑
i g(zi). In contrast, nonconvex and

nonseparable penalties have been proposed by Wipf et al. to
induce sparsity and low-rank in [14] and [15], respectively. It
is demonstrated that the objective functions with nonseparable
penalties have fewer sub-optimal local minima under certain
conditions of the mapping A [14], [15]. In [16], [17], more
formulations of nonseparable regularization for the sparse
model are provided and the limitation of separable penalties
are further studied.

In this paper, a new optimization problem is formulated
for recovering a simultaneously sparse and low-rank matrix.
Instead of directly regularizing the matrix, by employing
a Gaussian prior model with zero mean, an optimization
problem in the latent space involving only hyperparameters,
i.e., covariance in the statistic model, is proposed. The new
cost function is nonconvex and has nonseparable penalties.
Given the estimated covariance, the matrix can be recovered
by applying the maximum a posteriori (MAP) point estimate,
which has a closed-form expression. To give the rationale of
the proposed cost function, it is proved that the global minima
of the cost function produces the maximally sparse and low-
rank solution in the noiseless case under certain conditions on
the linear mapping A. An iterative algorithm is developed to
solve the newly proposed non-convex optimization problem
and convergence analysis on the proposed algorithm is con-
ducted. The superior performance of the proposed approach in
comparison with state-of-the-art alternatives is demonstrated
by extensive experiments on both synthetic data and real
hyperspectral images in CS applications.

The rest of the paper is organized as follows: Section II
describes related work on the simultaneously sparse and low-
rank model and the sparse Bayesian learning (SBL) [18],
[19] framework for sparse vector reconstruction. Section III
provides the new nonconvex and nonseparable regularization
for matrix reconstruction with the simultaneously sparse and

1Here, X is considered as a square matrix, i.e., m = n. Note that in
comparison to the number of degrees of freedom in X (i.e., (k1+k2)r−r2),
the sampling complexity of using a nonconvex formulation (i.e., O(r(k1 +
k2) logn)) is degraded only by a logarithmic factor.

2For instance, the ℓp pseudo-norm can be written as f(z) = ∥z∥pp =∑
i |zi|p =

∑
i g(zi).

low-rank model, and analysis on the global minimum of the
cost function. In Section IV, an iterative algorithm is developed
to solve the non-convex optimization problem and convergence
analysis is conducted. Numerical results are presented in
Section V, followed by conclusions in Section VI.

Throughout this paper, lower-case letters denote scalars,
boldface upper-case letters denote matrices, and boldface
lower-case letters denote column vectors. For a matrix X,
the superscripts (X)T , (X)−1, (X)† and |X| denote the
transpose, the inverse, the Moore-Penrose pseudoinverse and
the determinant of X, respectively. The trace of a matrix
is denoted by Tr[·]. rank[X] denotes the matrix rank. The
operator vec[·] denotes vectorization for a matrix, and diag[·]
denotes the diagonal vector of a matrix. I denotes an identity
matrix, and Ip denotes a p× p identity matrix.

II. BACKGROUND

This section introduces related work on the simultaneously
sparse and low-rank model and the SBL [18], [19], which
formulates nonconvex and nonseparable regularization for the
sparse model from a Bayesian perspective.

A. Related Work on the Simultaneously Sparse and Low-rank
Model

The sum of the sparse model and the low-rank model
has already been considered in a different context. In robust
principle component analysis (PCA) [20], a data matrix X is
decomposed as X = S+C, where S is sparse and C is low-
rank. Then X is reconstructed by using ℓ1 norm regularization
over S and nuclear norm regularization over C. Applications
using this approach include image background modeling,
dimensionality reduction [21], and covariance estimation [22].

In this paper, different to the robust PCA, the matrix X is
simultaneously sparse and low-rank. One would like to come
up with algorithms that exploit both types of structures to
minimize the number of measurements required for recovery.
In [23], Yang et al. show that an iterative thresholding al-
gorithm achieves (near) optimal rates adaptively under mild
conditions for matrix denoising applications where the map-
ping A = I. In [24]–[26], the ℓ1 norm and the nuclear norm
are employed to promote sparsity and low rank, respectively,
which together with a data fidelity term, result in a convex
optimization problem. The simultaneously sparse and low-
rank model with convex approximated penalties has also been
studied in a variety of scenarios, e.g., hyperspectral image
unmixing [7], [8] and feature coding [9]. In [27], [28], a
related but more strict model, i.e., the simultaneously row-
sparse and low-rank model, is exploited for hyperspectral
image compressed sensing, where the convex ℓ2,1 norm is used
to approximate the row sparsity of a matrix. Another related
work is sparse matrix factorization [29], which aims to infer
a low-rank matrix that can be factorized as the product of two
sparse matrices with few columns (left factor) and few rows
(right factor).

The use of convex approximations enables one to apply
well-developed convex optimization techniques to solve the
problem, and conduct theoretical analysis on the error bound
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and convergence. However, owing to the approximation, a
convex approach will fail when the global minimum of the cost
function is not equal to the true X. There is nothing one can
do to avoid this structural error for convex approaches from
the perspective of algorithmic development. In [5], Oymak
et al. investigate the number of linear measurements required
to recover simultaneously structured models, and theoretically
demonstrate that a combination of the ℓ1 norm and the nuclear
norm cannot perform significantly better than the best individ-
ual norm. Although it seems that using convex relaxation for
simultaneously structured models is not promising, Oymak et
al. further find the nonconvex recovery method3 could benefit
from both structures and is only slightly suboptimal in terms of
sampling complexity in comparison to the number of degrees
of freedom. In [30], a strictly convex objective function with
nonconvex and separable penalties is proposed for estimating
a sparse low-rank matrix from its noisy observation. The work
in [30] focuses on the denoising case, and it is not clear how
to extend to non-separable penalties.

B. Sparse Bayesian Learning

SBL [18], [19] is a popular approach for single sparse signal
recovery from a Bayesian perspective and the resulting cost
function benefits from nonconvex and nonseparable regular-
ization. Consider a sparse vector that is observed as

y = Ax+ e, (3)

where y ∈ Rn, A ∈ Rp×n, x ∈ Rn, and e ∈ Rp denote the
measurement vector, the measurement matrix, the unknown s-
parse vector to be estimated, and the noise vector, respectively.
Then assume the likelihood p(y|x) to be Gaussian with noise
variance λ, which is expressed as

p(y|x;λ) = N (Ax, λIp). (4)

Furthermore, SBL considers a Gaussian prior model

p(x|Γ) = N (0,Γ), (5)

where Γ ∈ Rn×n is a diagonal matrix.
In contrast to standard Bayesian methods, where the pri-

or distribution is fixed before any data are observed, SBL
estimates the prior distribution, i.e., Γ, from the data y by
applying the MAP estimation

γ =argmax
γ

p(γ|y)

= argmax
γ

∫
p(y|x)p(x;γ)dx

=argmin
γ

yTΣ−1y + log
∣∣Σ∣∣,

(6)

where γ = diag[Γ] ∈ Rn and Σ = λI + AΓAT . Given
the likelihood (4) and prior (5), the posterior distribution
p(x|y;Σ) is a Gaussian with mean

x = ΓAT (λI+AΓAT )−1y. (7)

While SBL with the cost function in (6) may seem quite
different to other methods that directly penalize on the signal

3For nonconvex recovery, the theoretical analysis in [5] is based on
properties of the global minimum of a nonconvex problem.

x, it can be reexpressed in the x-space as solving the following
optimization problem

min
x

∥y −Ax∥22 + λf(x)

s.t. f(x) = min
γ≥0

xTΓx+ log
∣∣Σ∣∣. (8)

It is proved in [14] that x∗ is a local minimum of (8) if
and only if γ∗ is a local minimum of (6). Obviously, f(x)
given in (8) is nonseparable, meaning f(x) ̸=

∑
i g(xi).

This nonseparable regularization term can be seen as an
approximation that promotes sparsity. The benefit of using the
nonseparable regularization given in (8) is that it produces
fewer local minima than when using ∥x∥0 directly, while
separable regularization terms, e.g., the ℓp pseudo-norm, fail
in this regard [14].

Similar to SBL that exploits empirical Bayes methods, Xin
et al. formulate a new nonseparable regularization, namely
BARM, for the low-rank model [15]. The following prior for
a low rank matrix X ∈ Rn×m is used in [15]

p(X|Ψ) =
∏
i

N (x:i;0,Ψ), (9)

where Ψ ∈ Rn×n is a positive semi-definite symmetric matrix.
Then the matrix X can be estimated from linear measurements
by using formal statistical inference procedures as SBL. How-
ever, it is not clear how to establish the simultaneously sparse
and low-rank model from the same perspective. A similar
problem occurs in our previous work [31], where we study
a simultaneously row-sparse and element-sparse model, while
unfortunately owing to the large difference between the row-
sparse model and the low rank model of a matrix4, the results
in [31] cannot be directly applied to the simultaneously sparse
and low-rank model.

III. NONCONVEX AND NONSEPARABLE REGULARIZATION
FOR THE SIMULTANEOUSLY SPARSE AND LOW-RANK

MATRIX MODEL

In this section, a new nonconvex and nonseparable reg-
ularization is proposed for matrix reconstruction with the
simultaneously sparse and low-rank model. Then analysis on
the global minimum of the cost function is conducted.

A. A New Cost Function

Define X ∈ Rn×m as an unknown matrix, and A ∈ Rp×nm

as a matrix corresponding to the linear operator A : Rn×m →
Rp such that the measurement vector is y = Ax. Let α > 0,
β > 0, Γ ∈ Rnm×nm be a diagonal matrix with the diagonal
vector γ = diag[Γ] ∈ Rnm, Ψ ∈ Rn×n be a positive semi-
definite symmetric matrix5, Ψ̄ = Im ⊗Ψ, and

Φ−1 = Γ−1 + Ψ̄
−1

. (10)

4The low-rank model and the row-sparse model capture the characteristics
of the data from different perspectives.

5Technically, Ψ must be positive definite for invertibility. For the conve-
nience throughout the paper with slight abuse of notation, the Moore-Penrose
pseudoinverse is used as the “inverse” of a positive semi-definite matrix. With
the eigendecomposition Ψ = QRQT , the Moore-Penrose pseudoinverse is
Ψ† = QR†QT , where R† is computed by using the inverse of nonzero
diagonal entries of R and setting others to zero.
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By assuming a Gaussian likelihood as in (4), a Gaus-
sian prior p(x|Φ) = N (0,Φ) and an improper (un-
normalisable) hyperprior probability density6 p(γ,Ψ) =
|λI+AΓAT |−

α
2 |λI+AΨ̄AT |−

β
2

|λI+AΦAT |−
1
2

, and conducting MAP estimation

max
γ≥0,Ψ≽0

∫
p(y|x)p(x;γ,Ψ)p(γ,Ψ)dx, the following opti-

mization problem is proposed for simultaneously sparse and
low-rank matrix reconstruction

min
γ≥0,Ψ≽0,
Ψ̄=Im⊗Ψ,

Φ−1=Γ−1+Ψ̄−1

yT (λI+AΦAT )−1y + α log |λI+AΓAT |

+ β log |λI+AΨ̄AT |,
(11)

where the cost function is nonconvex and nonseparable. Given
γ and Ψ, i.e., the optimal solutions of (11), the reconstructed
matrix with column-wise vectorization is

x = vec[X] = ΦAT (λI+AΦAT )−1y. (12)

The proposed optimization problem (11) in the latent space
may seem quite different to the cost functions, e.g., (1) and
(2), in the original X space. To shed light on the connection,
a dual problem of (11) in the X space is developed in the
sequel.

Now, by involving a new variable x ∈ Rnm, the first term
in the cost function of (11) can be upper bounded by

yT (λI+AΦAT )−1y ≤ 1

λ
∥y −Ax∥22 + xTΦ−1x, (13)

where the equality holds if (12) is satisfied. This upper bound
can be proved by firstly minimizing the right-hand side of (13)
with respect to the newly introduced variable x, which leads
to the optimal solution given in (12), and then inserting (12)
back to the right-hand side of (13), which leads to the left-
hand side of (13). By using this upper bound, a dual problem
of (11) in the X space can be expressed as

min
x

∥y −Ax∥22 + λf(x)

s.t. f(x) = min
γ≥0,Ψ≽0,
Ψ̄=Im⊗Ψ,

Φ−1=Γ−1+Ψ̄−1

xTΦ−1x+ α log |λI+AΓAT |

+ β log |λI+AΨ̄AT |.
(14)

The relationship between the proposed optimization problem
(11) in the latent space and its dual problem (14) in X space
is given in the following theorem.

Theorem 1: Let x̂ = Φ̂AT (λI + AΦ̂AT )−1y, Φ̂
−1

=

Γ̂
−1

+ ˆ̄Ψ
−1

, and ˆ̄Ψ = Im ⊗ Ψ̂. Then x̂ is a global/local
minimizer of (14) if and only if Γ̂ and Ψ̂ are global/local
minimizers of (11).

Proof: We first prove that given global minimizers of (11),
i.e., Γ̂ and Ψ̂, x̂ = Φ̂AT (λI+AΦ̂AT )−1y must be a global

6For a sparse γ or a low rank Ψ, we have lim
λ→0

p(γ,Ψ) → ∞. Therefore,
this improper hyperprior probability density promotes a simultaneously sparse
and low-rank model.

minimizer of (14). As x̂ = Φ̂AT (λI+AΦ̂AT )−1y, the upper
bound in (13) is tight, i.e.,

yT (λI+AΦ̂AT )−1y =
1

λ
∥y −Ax̂∥22 + x̂T Φ̂

−1
x̂. (15)

Inserting (15) into (11) and removing unrelated terms, we have
that Γ̂ and Ψ̂ are also global minimizers of

min
γ≥0,Ψ≽0,
Ψ̄=Im⊗Ψ,

Φ−1=Γ−1+Ψ̄−1

x̂TΦ−1x̂+ α log |λI+AΓAT |

+ β log |λI+AΨ̄AT |,

(16)

which suggests that Γ̂ and Ψ̂ are optimal solutions of the
condition in (14). For fixed Γ and Ψ, the unique optimal value
of x in (14) is given by (12). Therefore, by construction, it
follows x̂ is a global minimizer of (14).

Now we prove that if x̂ = Φ̂AT (λI + AΦ̂AT )−1y is a
global minimizer of (14), then Γ̂ and Ψ̂ are global minimizers
of (11). As x̂ is a global minimizer of (14), we have f(x̂) =

x̂T Φ̂
−1

x̂ + constant in (14). Thus, Γ̂ and Ψ̂ are optimal
solutions of the constraint in (14) by construction. Inserting
(15) into the optimization problem in the condition of (14)
and removing unrelated terms, we have that Γ̂ and Ψ̂ must be
global minimizers of (11).

The relationship between global solutions to (11) and (14)
extends to local optimal solutions, as given fixed Γ and Ψ,
the optimal x is unique in (12).

According to the Theorem 1, the two optimization problems
are equivalent in terms of global/local minimizers. Obviously,
f(x) given in (14) is nonseparable. This dual space view of the
original problem also helps in the derivation of the proposed
algorithm for simultaneous sparse and low-rank model in
Section IV.

B. Analysis on the Cost Function

The reconstructed matrix is linked via (12) with the pro-
posed optimization problem (11) in the latent space. It would
be good to provide the rationale why the proposed opti-
mization problem (11) favors a solution that leads to the
reconstructed X in (12) with a simultaneous sparse and low-
rank structure.

Firstly, the log-determinant function is a concave non-
decreasing function of the singular values of symmetric pos-
itive definite matrices, and thus the cost function (11) favors
minimal rank of Ψ and Γ. As Γ is a diagonal matrix, a
low-rank Γ leads to a sparse diagonal vector γ. According
to (10), the column space of Φ is the intersection space
between the column space of Ψ̂ and the column space of Γ.
Therefore, Φ is low-rank and has only a few non-zero rows.
As the reconstructed matrix X in (12) results from a left-
multiplication with Φ, X must be simultaneous sparse and
low-rank.

In the following formal result, it has been proved that
the global minima of the cost function in (11) produces the
maximally sparse and low-rank solution7 in the noiseless case.

7The level of simultaneously sparse and low-rank can be characterized as
a multi-objective function of the sparsity and the rank associated with some
weights.
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Definition 1: The spark, spark[A], of a given matrix A
is the smallest number of columns of A that are linearly
dependent.

Theorem 2: Let y = A[X], where X ∈ Rn×m (m ≤ n),
A : Rn×m → Rp is a linear operator corresponding to a
matrix A ∈ Rp×nm such that y = Ax. Define s and r as the
sparsity level and rank of any feasible solution, respectively,
that lead to the smallest αs+ βmr, where α > 0 and β > 0.
Then, if s < p, r < p

m and spark[A] = p + 1, in the limit
λ → 0, the global minima of (11) is achieved at γ̂ and Ψ̂

such that x̂ = Φ̂AT (AΦ̂AT )−1y, where Φ̂
−1

= Γ̂
−1

+ ˆ̄Ψ
−1

and ˆ̄Ψ = Im ⊗ Ψ̂.
Proof: In the limit λ → 0, a minimizer of the cost

function in (11) must satisfy y ∈ span[(λI + AΦAT )
1
2 ],

otherwise the cost function would diverge to infinity as
y(λI + AΦAT )−1y tends to be infinity with a faster rate
than the log-determinant terms approaching minus infinity8.
The constraint y ∈ span[(λI + AΦAT )

1
2 ] is equivalent to

requiring

yT (λI+AΦAT )−1y ≤ ρ,

where ρ > 0 denotes some finite bound.
While y(λI + AΨ̄AT )−1y is bounded, the minimum oc-

curs when the log-determinant terms are approaching minus
infinity. According to x̂ = Φ̂AT (AΦ̂AT )−1y and Φ̂

−1
=

Γ̂
−1

+ ˆ̄Ψ
−1

, we let ∥γ̂∥0 = s and rank[Ψ̂] = r. As s < p,
r < p

m and spark[A] = p+1, the sum of the log-determinant
terms can be expressed by

α log |λI+AΓ̂AT |+ β log |λI+Aˆ̄ΨAT |

=α

p∑
i=1

log |λ+ σi[AΓ̂AT ]|+ β

p∑
i=1

log |λ+ σi[A
ˆ̄ΨAT ]|

=α

s∑
i=1

log |λ+ σi[AΓ̂AT ]|+ β

mr∑
i=1

log |λ+ σi[A
ˆ̄ΨAT ]|

+ (α(p− s) + β(p−mr)) log |λ|,
(17)

where σi[·] denotes the ith singular value of a matrix. The
first equality of (17) can be proved by using the singular value
decomposition. Consequently, when λ → 0, the sum of log-
determinant terms scales as (α(p− s) + β(p−mr)) log |λ|,
and hence the overall cost function is minimized when αs +
βmr achieves its minimum. Now the proof is completed.

The condition spark[A] = p + 1 in Theorem 2 can be sat-
isfied almost surely by any random matrix with p ≤ nm [32].
This result explains why the proposed optimization problem
is able to find exactly the true simultaneously sparse and low-
rank matrix.

IV. ALGORITHM DERIVATION

In this section, an iterative algorithm is developed to solve
the non-convex optimization problem in (11) for simultaneous-
ly sparse and low-rank matrix reconstruction, and convergence
analysis on the proposed algorithm is provided.

8The derivative of the cost function in (11) tends to be minus infinity when
the diagonal elements of γ and the singular values of Ψ are getting close to
zeros.

A. Updating Rules

1) Update x: As the optimization problem (11) is non-
convex and hard to solve, the proposed algorithm uses
majorization-minimization that repeatedly minimizes and up-
dates surrogate function that majorizes the original cost func-
tion.

By exploiting the upper bound given in (13), the original
optimization problem (11) can be solved by alternatively min-
imizing the following cost function using coordinate descent
method:

L̃(x,γ,Ψ)

=
1

λ
∥y −Ax∥22 + xTΦ−1x+ α log |λI+AΓAT |

+ β log |λI+AΨ̄AT |,

(18)

where the solution of minx L̃(x,γ,Ψ) is given in (12).
Therefore, by minimizing L̃(x,γ,Ψ), an updated estimation
of the matrix X can be obtained according to (12).

It is worth mentioning that according to (10), the com-
putation of Φ involves a matrix inverse operation, which
has a very high computational complexity O((nm)3) and
prohibits its application to recover large matrices. Fortunately,
this computational complexity can be reduced to O(mn3) by
exploiting the block structure in Γ and Ψ̄. The ith diagonal
sub-matrix of Φ can be computed by

Φi = (Γ−1
i +Ψ−1)−1

= Γi − Γi(Ψ+ Γi)
−1Γi,

(19)

where Γi ∈ Rn×n denotes the ith diagonal sub-matrix of Γ,
and the second equality is obtained by using the Woodbury
identity on matrix inverse.

2) Update γ and Ψ: As the log-determinant terms are
concave nondecreasing functions, their concave conjugate
functions can be defined as

h(z) = min
γ

nm∑
i=1

zi
γi

− log

∣∣∣∣Γ−1 +
1

λ
ATA

∣∣∣∣ , (20)

and

d(W) = min
Ψ≽0

Ψ̄=Im⊗Ψ

Tr[WTΨ−1]−log

∣∣∣∣Ψ̄−1
+

1

λ
ATA

∣∣∣∣ . (21)

According to the duality relationship of concave conjugate
functions, there are upper bounds

log

∣∣∣∣Γ−1 +
1

λ
ATA

∣∣∣∣ = min
z

nm∑
i=1

zi
γi

− h(z), (22)

and

log

∣∣∣∣Ψ̄−1
+

1

λ
ATA

∣∣∣∣ = min
W

Tr[WTΨ−1]− d(W). (23)

The bound in (22) is tight when the optimal value of zi equals
the slope at the current 1

γi
of log

∣∣Γ−1 + 1
λA

TA
∣∣, i.e., zi =

∇ 1
γi

log
∣∣Γ−1 + 1

λA
TA

∣∣, which leads to

z = diag
[
Γ− ΓAT

(
λI+AΓAT

)−1
AΓ

]
. (24)
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Similarly, the bound in (23) is tight when

W =
m∑
i=1

Ψ−ΨAT
i

(
λI+AΨ̄AT

)−1
AiΨ. (25)

Inserting the upper bounds, (22) and (23), into the cost
function (18) and omitting irrelevant terms, we arrive at the
following approximation

min
γ,Ψ≽0

Ψ̄=Im⊗Ψ

xTΓ−1x+ xT Ψ̄
−1

x+ α log |Γ|+ βm log |Ψ|

+ α

nm∑
i=1

zi
γi

+ βTr[WTΨ−1],

(26)

and its solutions are

γi = zi +
x2
i

α
(27)

and
Ψ =

1

m

(
W +

1

β
XXT

)
. (28)

Note that Ψ is positive semi-definite, if Ψ is initialized as a
positive semi-definite symmetric matrix.

B. Convergence Analysis

By iteratively cycling through each of the above update
rules, the proposed algorithm is derived for simultaneously
sparse and low-rank matrix reconstruction, that are described
in Algorithm 1. Although each iteration of the proposed
algorithm is guaranteed to reduce or leave the cost function
(11) unchanged, it is insufficient to guarantee formal conver-
gence to a stationary point. Note that deriving a theoretical
guarantee for an algorithm involving nonconvex and nonsep-
arable regularization is usually very difficult, as it requires,
for example, that the additional conditions of the Zangwills
Global Convergence Theorem hold [33].

Here, the proposed algorithm can be guaranteed to converge
to a stationary point with some modification to the original cost
function (11). A small penalty term δ(t)

(
Tr[Ψ−1] + Tr[Γ−1]

)
can be added to the cost function, where δ(t) > 0 is decreasing
in each iteration of the algorithm. It is worth noting that the
revised cost function is close to the original cost function when
δt → 0. To incorporate the new penalty term, the proposed
algorithm can be modified by replacing (27) and (28) with
γi = zi +

x2
i

α + δ(t) and Ψ = 1
m

(
W + 1

βXXT + δ(t)
)

,
respectively. Note that adding the small penalty term enables
us to theoretically prove convergence, although this term does
not need to be added in practice. Empirical evidences are
provided to demonstrate the feasibility and applicability of the
proposed algorithm in Section V with δ(t) = 0.

Theorem 3: Let {δ(t)} be a decreasing positive sequence,
and adjust the proposed algorithm to incorporate a new penalty
term into (11), which leads to

min
γ≥0,Ψ≽0,
Ψ̄=Im⊗Ψ,

Φ−1=Γ−1+Ψ̄−1

yT (λI+AΦAT )−1y + α log |λI+AΓAT |

+ β log |λI+AΨ̄AT |+ δ(t)
(
Tr[Ψ−1] + Tr[Γ−1]

)
,

(29)

Then the resulting sequence of iterations, i.e., {γ(t),Ψ(t)} is
bounded, and every cluster point of the sequence is a stationary
point of the optimization problem in (29).

Proof: To simplify the notation, we let θ = {γ,Ψ}, and
define

J (θ) =yT (λI+AΦAT )−1y + α log |λI+AΓAT |
+ β log |λI+AΨ̄AT |+ δ(t)

(
Tr[Ψ−1] + Tr[Γ−1]

)
(30)

and

J̃ (x,θ) =
1

λ
∥y −Ax∥22 + xTΦ−1x+ α log |λI+AΓAT |

+ β log |λI+AΨ̄AT |+ δ(t)
(
Tr[Ψ−1] + Tr[Γ−1]

)
.

(31)

According to (13), we have J (θ) ≤ J̃ (x,θ), where the
equality holds if (12) is satisfied. Each iteration of the pro-
posed algorithm can be guaranteed to reduce or leave the
cost function J (θ) unchanged, i.e., J (θ(t+1)) ≤ J (θ(t))
for all t ≥ 1. To be specific, according to the update
rule of x, we have J (θ(t)) = J̃ (x(t+1),θ(t)). The update
rule of θ guarantees J̃ (x(t+1),θ(t+1)) ≤ J̃ (x(t+1),θ(t)).
According to (13), we have J (θ(t+1)) ≤ J̃ (x(t+1),θ(t+1)).
Therefore, the cost function is guaranteed to not increase, i.e.,
J (θ(t+1)) ≤ J (θ(t)).

The derivative of the log-determinant term is upper bounded
by

∂α log |λI+AΓAT |
∂γi

=αTr[(λI+AΓAT )−1 ∂AΓAT

∂γi
]

=αTr[(λI+AΓAT )−1aia
T
i ]

≤αTr[(λI)−1aia
T
i ],

(32)

where ai denotes the ith column of A. In addition, the
derivative ∂Tr[Γ−1]

∂γi
∝ − 1

γ2
i

tends to be minus infinity when
1
γi

→ ∞. Thus, α log |λI + AΓAT | + δ(t)Tr[Γ−1] tends to
be infinity with 1

γi
→ ∞. Similarly, it can be proved that

β log |λI +AΨ̄AT | + δ(t)Tr[Ψ−1] tends to be infinity when
∥Ψ−1∥F → ∞. This observation leads to the conclusion
that the sequence {J (θ(t))} is lower bounded. Therefore,
the sequence {J (θ(t))} converges, which implies that the
sequence of iterations {θ(t)} is bounded (as J (θ) → ∞ if
and only if ∥θ∥F → ∞).

Let θ̃ be a cluster point of {θ(t)}, and suppose it is not a
stationary point. According to the definition of cluster point,
there exists a subsequence {θ(h)} of {θ(t)} converging to θ̃.
By passing to a further subsequence if necessary, it can be
assumed that {θ(h+1)} is convergent with a different limit θ̆.
By assumption, θ̃ is not a stationary point. Passing to limits,
we see that θ̃ is not a minimizer of minθ J̃ (x̃,θ), where
x̃ = limh→∞ argminx J̃ (x,θ(h)). Then we have J̃ (x̃, θ̆) <
J̃ (x̃, θ̃), as θ(h+1) minimizes minθ J̃ (x(h),θ). It follows that

J (θ̆) = J̃ (x̆, θ̆) ≤ J̃ (x̃, θ̆) < J̃ (x̃, θ̃) = J (θ̃). (33)
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Algorithm 1 The proposed algorithm for simultaneously s-
parse and low-rank matrix reconstruction

Step 1: Initialize t = 0, Γt = I, and Ψt = I;
Step 2: Compute xt using (12);
Step 3: Compute zt and Wt using (24) and (25), respectively;
Step 4: Compute Γt+1 and Ψt+1 using (27) and (28), respec-

tively;
Step 5: Let t = t+1, and go to step 2 if some halting condition

is not satisfied.

As the sequence {J (θ(t))} converges, we have that

lim
t→∞

J (θ(t)) = lim
h→∞

J (θ(h)) = J (θ̃) = lim
h→∞

J (θ(h+1))

= J (θ̆),
(34)

which contradict (33). Therefore, every cluster point of the
sequence is a stationary point.

As the sequence {J (θ(t))} is bounded, there is at least
one cluster point θ∗ so that J (θ∗) is a stationary point. The
algorithm might converge to a saddle point. However, this is
rare [34] and any minimal perturbation leads to escape.

V. NUMERICAL EXPERIMENTS

In this section, the proposed algorithm is compared with the
following approaches for simultaneously sparse and low-rank
matrix reconstruction:

• Convex approach: using the CVX package [35] to solve
the simultaneously sparse and low-rank matrix recon-
struction problem with the convex ℓ1 norm and nuclear
norm regularization;

• Nonconvex approach [7]: using the state-of-the-art non-
convex approach with the weighted ℓ1 norm and the
weighted nuclear norm [7] for recovering a sparse and
low-rank matrix;

• SBL [18], [19]: sparse vector reconstruction via noncon-
vex and nonseparable regularization;

• BARM [15]: low-rank matrix reconstruction via noncon-
vex and nonseparable regularization.

Reconstruction performance is evaluated by both synthetic
data and real hyperspectral images for compressive sensing
applications.

A. Experiments With Synthetic Data

In this subsection, a series of experiments with synthetic
data are conducted in order to demonstrate the performance
of the proposed simultaneously sparse and low-rank matrix
reconstruction approach for different problem setups, i.e. dif-
ferent matrix sizes n×m, different sparsity levels s, different
ranks r and different number of measurements p. To generate
the ground truth matrix X, a nonsparse submatrix is produced
by randomly choosing

√
s rows and

√
s columns of X. All the

elements not belonging to the submatrix are set to zeros. To
enforce a low rank, the nonsparse submatrix Xs is generated
as Xs = Xs,1Xs,2 ∈ R

√
s×

√
s, where Xs,1 ∈ R

√
s×r and

Xs,2 ∈ Rr×
√
s are random matrices generated by independent

and identically distributed Gaussian N (0, 1). The entries of the
sensing matrix A ∈ Rp×mn are generated independently from
N (0, 1). The recovery performance is evaluated via relative
recovery error defined by ∥X̂−X∥F

∥X∥F
, and averaged over 100

trials. For the noiseless case, if the relative recover error is
smaller than 10−3, X̂ is regarded as a successful recovery of
X.

If not pointed out specifically in the experiments, the
baseline settings in the simulation are given as: the number of
measurements p = 200, the matrix dimension m = n = 50,
the sparsity level s = 100, and the matrix rank r = 4.
α = 1

2 and β = 1
2 are simply fixed for the proposed

algorithm to balance the sparsity and the low-rank model.
For the convex approach and the nonconvex approach [7],
the regularization parameters are fine-tuned with ten different
values, i.e., {10−10, 10−9, . . . , 10−1}.

1) Noiseless Case: The first experiment studies how the
proposed algorithm performs in the noiseless case to exactly
recover the true matrix. With the default settings, Fig. 1
illustrates the the original simultaneously sparse and low-
rank matrix in one trial and matrices reconstructed by various
algorithms, where non-zero entries are in black. It is observed
that the proposed algorithm is the only one that is able to
successfully reconstruct the original simultaneously sparse and
low-rank matrix.

More comparison results are shown in Fig. 2, where the
number of measurements, the matrix dimension, the sparsity
level and the matrix rank are varied in different sub-figures.
For all the compared algorithms, the proposed algorithm
with nonconvex and nonseparable regularization consistently
achieves the best performance in all settings. For instance,
according to Fig. 2 (d), the proposed algorithm could success-
fully recover matrices with rank r = 5, while all the other
algorithms may fail when the matrix rank is greater than 1.
The nonconvex approach [7] achieves better performance than
the convex approach. Note that although the cost function
in [7] is nonconvex, its sparse-enforcing penalty and low-
rank-enforcing penalty are both separable, while the proposed
approach in this paper employs nonseparable regularization.
Limitations of separable penalties have been observed in [16],
[17], and [14], [15] demonstrate that objective functions with
nonseparable penalties lead to fewer sub-optimal local minima
under certain conditions of the linear mapping. The SBL
and the BARM only exploit either the sparse structure or
the low-rank structure, and thus have significant performance
degradation in comparison to the proposed algorithm.

We now evaluate the computing time of the proposed
method. Our simulations are performed in a MATLAB R2014a
environment on a system with a dual-core 3.4 GHz CPU
and 16 GB RAM, running under the Microsoft Windows 7
operating system. As shown in Table I, the proposed algorithm
takes more computing time than the nonconvex approach [7].
However, it could be argued that the proposed algorithm will
be preferred in applications where a high-accuracy solution is
desired.

Fig. 3 shows the convergence performance of the proposed
algorithm. For the default settings, the algorithm converges
with 250 iterations, while less iterations are required for
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Fig. 1. Comparison of various algorithms for matrix reconstruction with the default settings.
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(b) Varying the matrix dimension
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(c) Varying the sparsity level
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(d) Varying the matrix rank

Fig. 2. Comparison of reconstruction success rate in the noiseless case.
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Fig. 3. Convergence rates of the proposed algorithm for a single instance.

relatively easy cases, i.e., (s = 25, r = 4) and (s = 100,
r = 1). The computational complexity in each iteration of the

proposed algorithm is O(p3), which is the same as the SBL
and the BARM.

2) Noisy Case: This experiment investigates how the pro-
posed algorithm performs if the data is corrupted by noise.
The ground truth matrix is randomly generated as the previous
experiments in the noiseless case. Then an additive noise
matrix is produced, where elements are generated following
a zero-mean Gaussian distribution with variance adjusted to
have a desired value of the signal to noise ratio (SNR).
Results are shown in Fig. 4, where the proposed algorithm
exhibits superior reconstruction accuracy in comparison to all
the competitors when p = 200. One would observe that the
performance of the state-of-the-art nonconvex approach [7]
with p = 400 measurements and fine-tuned regularization
parameters is close to the proposed algorithm. However, the
proposed algorithm uses fixed regularization parameters, i.e.,
α = 1

2 and β = 1
2 , while its performance may be improved

by fine-tuning α and β.
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TABLE I
COMPARISON OF COMPUTING TIME (IN SECONDS)

Number of measurements p Matrix dimension Performance SBL BARM Convex Nonconvex Proposed
200 50× 50 Relative recovery error 6.9× 10−1 9.8× 10−1 7.7× 10−1 8.2× 10−1 9.9× 10−4

Computing time 23.1 57.7 28.4 18.8 40.2
400 50× 50 Relative recovery error 2.5× 10−4 9.9× 10−4 3.2× 10−1 1.4× 10−3 9.7× 10−4

Computing time 13.0 38.9 71.3 20.8 25.6
400 100× 100 Relative recovery error 3.6× 10−4 1.0 5.0× 10−1 9.4× 10−3 10× 10−4

Computing time 260.4 923.9 503.8 315.7 644.6
600 50× 50 Relative recovery error 3.8× 10−5 8.8× 10−4 1.1× 10−5 3.8× 10−4 8.8× 10−4

Computing time 25.0 24.4 129.4 17.1 25.4
600 100× 100 Relative recovery error 7.8× 10−5 0.4688 7.4× 10−2 5.3× 10−3 9.8× 10−4

Computing time 281.6 1375 882.7 319.1 627.0
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Fig. 4. Comparison of reconstruction accuracy in the noisy case.

(a) Pavia University data (b) Indian Pines data
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Fig. 5. Distributions of the sparsity level and the matrix rank for blocks of
different hyperspectral data.

B. Experiments With Real Hyperspectral Images
Now the proposed algorithm is evaluated by considering

compressive hyperspectral image reconstruction. Two hyper-

spectral datasets, i.e., the Pavia University scene and the
Indian Pines scene, are used in the experiments. The Pavia
University data was acquired by a flight campaign over Pavia
in Italy and consists of 640 × 340 pixels and 103 spectral
reflectance bands, while the Indian Pines data was gathered
over the Indian Pines test site in north-western Indiana in
US and consists of 145× 145 pixels and 200 spectral bands.
Given the size of the datasets, it will take a long time to
reconstruct the full dataset by solving the inverse CS problem,
which limits the effectiveness in practical CS hyperspectral
imaging systems. One potential method to deal with this
issue is to partition the scene into multiple sub-blocks and
perform reconstruction algorithm in parallel for each block
simultaneously. This strategy is employed in the experiments,
where each hyperspectral data is partitioned into equally sized
blocks with 8×8 pixels and 64 spectral bands. By vectorizing
the 3D data cube in the spatial domain, a set of 64×64 matrices
is obtained. For these matrices, the distribution of the matrix
rank r and the distribution of the sparsity level9 s under 1D 4
level discrete wavelet transform (DWT) is shown in Fig. 5. It
is observed that the Pavia University data is more sparse than
the Indian Pines data, while the Indian Pines data has a lower
rank than the Pavia University data in the average case.

It is also assumed that a whiskbroom scanner is used
to collect and compress each block pixel by pixel [36],
then each hyperspectral block is recovered independently.
Without loss of generality, the entries of the sensing matrix
are generated independently from N (0, 1). For the convex
approach and the nonconvex approach [7], the regulariza-
tion parameters are fine-tuned with ten different values, i.e.,
{10−10, 10−9, . . . , 10−1}, on a randomly selected subset of
the data.

The reconstruction performance of various approaches is re-
ported in Table I. For both hyperspectral datasets and different
CS undersampling ratios, the proposed approach consistently
outperforms all the competitors. The SBL that only exploits
the sparse model has a worse reconstruction accuracy than the
BARM that considers the low-rank model for hyperspectral
datasets. Note that α = 1

2 and β = 1
2 is simply set for

the proposed algorithm to balance the sparsity and the low-
rank model, and it is able to benefit from the joint model and

9The matrix rank is defined as the number of singular values which is
greater than 1% of the largest singular value; similarly, the sparsity level of
a matrix is defined as the number of entries whose absolute value is greater
than 1% of the largest absolute value of all entries.
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TABLE II
COMPARISON OF RECONSTRUCTION ACCURACY FOR HYPERSPECTRAL IMAGES

(a) Relative Recovery Error for Pavia University Data
Undersampling Ratio SBL BARM Convex Nonconvex Proposed

10% 0.9894 0.9334 0.4003 0.4067 0.3553
20% 0.4440 0.0939 0.0817 0.0936 0.0508
30% 0.1027 0.0217 0.0332 0.0770 0.0191
40% 0.0659 0.0168 0.0224 0.0697 0.0148
50% 0.0411 0.0144 0.0168 0.0686 0.0130

(b) Relative Recovery Error for Indian Pines Data
Undersampling Ratio SBL BARM Convex Nonconvex Proposed

10% 0.9336 0.9320 0.2468 0.1717 0.1306
20% 0.6781 0.0598 0.1325 0.0557 0.0368
30% 0.2526 0.0225 0.0714 0.0344 0.0207
40% 0.1735 0.0202 0.0213 0.0213 0.0182
50% 0.1288 0.0158 0.0163 0.0164 0.0147

achieves the best performance of all. It is envisaged that by
adjusting α and β, the proposed algorithm may have improved
reconstruction performance, while optimizing the parameter
values require additional knowledge of the data, which is out
of the scope this paper.

VI. CONCLUSION

In this paper, a novel optimization problem is proposed
for simultaneously sparse and low-rank matrix reconstruction
via nonconvex and nonseparable regularization. Distinct to
traditional approaches that directly regularize the original
signal, the new optimization problem is formulated in the
latent space akin to the SBL that considers the sparse model.
Theoretical analyses are provided to demonstrate the capability
of the proposed nonconvex cost function to recover a simulta-
neously sparse and low-rank matrix. An algorithm is derived
to solve the proposed optimization problem with convergence
analysis. The superiority of the proposed approach has been
demonstrated by experiments with synthetic data and also
experiments involving hyperspectral images.
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