马天雪
博士、副教授
博士、副教授
办公电话: | 电子邮件: matx@bjtu.edu.cn |
通讯地址:北京市海淀区上园村3号北京交通大学物理科学与工程学院力学系 | 邮编:100044 |
2005 ~ 2009 东北大学 工程力学 工学学士
2009 ~ 2011 北京交通大学 固体力学 工学硕士
2011 ~ 2017 北京交通大学 力学 工学博士
2017.10 ~ 2021.07 德国锡根大学 土木工程系 博士后研究员
2021.09 ~ 至今 北京交通大学 力学系 副教授
国家自然科学基金“面上”项目: 基于三维超材料全波动模式协同工作的宽频弹性波俘能机理与优化设计, 2024.1-2027.12, 53万, 主持
道路施工技术与装备教育部重点实验室开放基金: 基于三维粘弹性超材料的地震波屏障设计, 2022.1-2023.12, 3万, 主持
基本科研业务费人才基金: 基于机器学习的声学拓扑绝缘体研究, 2022.4-2024.3, 30万, 主持
德国科学基金会(DFG)项目: Active tuning of vibration and noise by the optimal design of acoustic
metamaterial structures, 2018.07-2021.09, 26.4万欧元, 参与
德国科学基金会(DFG)项目: Acoustic metamaterial-based energy harvesting of mechanical waves: Modeling,
optimization, and experiments, 2017.10-2021.07, 33万欧元, 参与
国家自然科学基金“面上”项目: 受激布里渊散射光力耦合效应对声光子晶体波导中弹性波传播的影响, 2014.01-2017.12, 76万, 参与
国家自然科学基金“面上”项目: 含缺陷轻质点阵夹芯结构中弹性导波的传播特性研究, 2013.01-2016.12, 85万, 参与
北京交通大学博士研究生创新基金: 声光子晶体带隙调控及声光器件设计, 2013.01-2013.12, 3万, 主持
本科生课程:
理论力学
研究生课程:
塑性理论,力学与声学超材料
欢迎力学、机械、物理、土木及相关专业同学加入课题组攻读硕士、博士学位!
博士生:
2022级 张雪千(与汪越胜教授共同指导):北京力学会第29届学术年会研究生优秀论文奖,第二届全国超材料大会超材料优秀科技前沿海报奖
2023级 唐金成(与汪越胜教授共同指导):
2024级 李 东(与姚凯副教授共同指导):
硕士生:
2021级 张雪千(与陈阿丽教授共同指导):硕博连读
2022级 唐金成(与汪越胜教授共同指导):硕博连读
2022级 付 畅:第二届全国超材料大会超材料优秀科技前沿海报奖
2023级 李 东(与汪越胜教授共同指导):硕博连读
2023级 于 濛:
2024级 梁天赐(与汪越胜教授共同指导):
2024级 杜彩霞:
第一或通讯作者期刊论文:
[40] Z-Y Li, T-X Ma*, D Yan*, H Wang, M V Golub, S Mahmoud Hosseini, D Liu, P Wei, Ch Zhang*. Non-Fourier thermal focusing by gradient thermal metamaterials based on the Cattaneo–Vernotte model. Journal of Applied Physics 136, 193106 (2024).
[39] C Fu, T-X Ma*. Modulation of Surface Elastic Waves and Surface Acoustic Waves by Acoustic–Elastic Metamaterials. Crystals 14, 997 (2024).
[38] J Tang, T-X Ma*, J Liu*, Y-S Wang. Complex dispersion analysis of viscoelastic effects on elastic waves in three-dimensional single-phase metamaterials. Physica Scripta 99, 105961 (2024).
[37] K Wang, X-S Li, L Cao, P Guo, G Fan, J Qin, T-X Ma*. Enhancement of piezoelectric energy
harvesting for flexural waves by a metasurface-assisted phononic cavity. Results
in Physics 63, 107870 (2024).
[36] J-J Mao, H Chen, T-X Ma*. Elastic wave insulation and
propagation control based on the programmable curved-beam periodic structure. Applied
Mathematics and Mechanics English Edition, (2024).
[35] N Gao#, T-X Ma#, W J Zhou*, Y-S Wang*, W Q Chen*. A brief review of solitary waves in nonlinear metamaterials. Mechanics Research Communications 137, 104260 (2024).
[34] Z-Y Li, L-T Xie, T-X Ma*, Y-Z Wang, Y-Y Chai, Ch Zhang*, F-M Li. A simple active adaptive control method for mitigating and isolating mechanical vibrations of the pyramid-core lattice sandwich structures. Journal of Sound and Vibration 577, 118321 (2024).
[33] T-X Ma, L Cao*. Complex dispersion analysis of true and pseudo surface waves propagating in two-dimensional viscoelastic seismic metamaterials. AIP Advances 14, 015219 (2024).
[32] Z-Y Li, M Mellmann, Y Wang, T-X Ma*, D Yan*, M V Golub, S Mahmoud Hosseini, D Liu, P Wei, Ch Zhang. Non-Fourier
heat conduction in 2D thermal metamaterials. Materials Today Communications 38,
107828 (2024).
[31] X-L Tang, T-X Ma*, Y-S Wang*. Topological rainbow trapping and acoustic energy amplification in two-dimensional gradient phononic crystals. Applied Physics Letters, 122, 112201 (2023).
[30] T-X Ma, J Liu, Ch Zhang*, Y-S Wang*. Topological edge and interface states in phoxonic crystal cavity chains. Physical Review A 106, 043504 (2022).
[29] Z-Y Li, T-X Ma*, Y-Z Wang, Y-Y Chai, Ch Zhang*, F-M Li. Active auto-adaptive metamaterial plates for flexural wave
control. International Journal of Solids and Structures 254–255, 111865 (2022).
[28] T-X Ma#, X-S Li#, X-L Tang,
X-X Su, Ch Zhang*, Y-S Wang*. Three-dimensional acoustic circuits with coupled resonators in phononic
crystals. Journal of Sound and Vibration 536,
117115 (2022).
[27] T-X Ma, Z-Y Li, Ch Zhang*, Y-S Wang*. Energy harvesting of Rayleigh surface waves by a phononic crystal Luneburg lens. International Journal of Mechanical Sciences 227, 107435 (2022).
[26] T-X Ma, Q-S Fan, Ch Zhang*, Y-S Wang*. Flexural wave energy harvesting by the topological interface state of a phononic crystal beam. Extreme Mechanics Letters 50, 101578 (2022).
[25] T-X Ma, Y-F Wang, X-S Li, Ch Zhang*, Y-S Wang*. Complex dispersion analysis of topologically protected interface states in two-dimensional viscoelastic phononic crystals. Journal of Physics D 55, 055304 (2022).
[24] T-X Ma, Q-S Fan, Ch Zhang*, Y-S Wang*. Acoustic flatbands in phononic crystal defect lattices. Journal of Applied Physics 129, 145104 (2021).
[23] T-X Ma, Q-S Fan, Z-Y Li, Ch Zhang*, Y-S Wang*. Flexural wave energy harvesting by multi-mode elastic metamaterial cavities. Extreme Mechanics Letters 41, 101073 (2020).
[22] Z-Y Li, T-X Ma*, A-L Chen*, Y-S Wang, Ch Zhang. Thermal wave crystals based on the dual-phase-lag model. Results in Physics 19, 103371 (2020).
[21] Z-Y Li, T-X Ma*, Y-Z Wang, F-M Li, and Ch Zhang*. Vibration isolation by novel meta-design of pyramid-core lattice sandwich structures. Journal of Sound and Vibration 480, 115377 (2020).
[20] T-X Ma, Y-S Wang*, Ch Zhang*. Photonic and phononic surface and edge modes in three-dimensional phoxonic crystals. Physical Review B 97, 134302 (2018).
[19] S-M Yuan, T-X Ma*, A-L Chen, Y-S Wang*. Liquid-assisted tunable metasurface for simultaneous manipulation of surface elastic and acoustic waves. AIP Advances 8, 035026 (2018).
[18] 马天雪, 苏晓星, 董浩文, 汪越胜, 张传增. 声光子晶体带隙特性与声光耦合作用研究综述. 力学学报 49, 743-757 (2017).
[17] T-X Ma, Y-S Wang*, Ch Zhang*. Simultaneous guidance of surface acoustic and surface optical waves in phoxonic crystal slabs. Crystals 7, 350 (2017).
[16] T-X Ma, Y-S Wang*, Ch Zhang. Enhancement of acousto-optical coupling in two-dimensional air-slot phoxonic crystal cavities by utilizing surface acoustic waves. Physics Letters A 381, 323-329 (2017).
[15] T-X Ma, Y-S Wang*, Ch Zhang, X-X Su. Theoretical research on a two-dimensional phoxonic crystal liquid sensor by utilizing surface optical and acoustic waves. Sensors and Actuators A 242, 123-131 (2016).
[14] T-X Ma, K Zou, Y-S Wang*, Ch Zhang, X-X Su. Acousto-optical interaction of surface acoustic and optical waves in a two-dimensional phoxonic crystal hetero-structure cavity. Optics Express 22, 28443-28451 (2014).
[13] T-X Ma, Y-S Wang*, Ch Zhang, X-X Su. Simultaneous guiding of slow elastic and light waves in three-dimensional topology-type phoxonic crystals with a line defect. Journal of Optics 16, 085002 (2014).
[12] T-X Ma, Y-S Wang*, Ch Zhang. Investigation of dual photonic and phononic bandgaps in two-dimensional phoxonic crystals with veins. Optics Communications 312, 68-72 (2014).
[11] T-X Ma, X-X Su, Y-S Wang*, Y-F Wang. Effects of material parameters on elastic band gaps of three-dimensional solid phononic crystals. Physica Scripta 87, 055604 (2013).
[10] T-X Ma, Y-S Wang*, Y-F Wang, X-X Su. Three-dimensional dielectric phoxonic crystals with network topology. Optics Express 21, 2727-2732 (2013).
[9] T-X Ma, Y-S Wang*, X-X Su, Y-F Wang. Elastic band structures of two-dimensional solid phononic crystal with negative Poisson's ratios. Physica B 407, 4186-4192 (2012).
其他作者论文:
[8] Z-Y Li, Y-Z Wang*, T-X Ma, Y-F Zheng, Ch Zhang*, F-M Li. A self-sensing and self-actuating metamaterial sandwich
structure for the low-frequency vibration mitigation and isolation. Composite
Structures 297,
115894 (2022).
[7] 李政阳, 王彦正, 马天雪, 张传增*. 智能压电声子晶体研究现状与展望. 科学通报 67, 1305-1325 (2022).
[6] G-H Li, T-X Ma, Y-Z Wang*, Y-S Wang. Active control on topological immunity of elastic wave metamaterials. Scientific Reports 10, 9376 (2020).
[5] A-L Chen*, Z-Y Li, T-X Ma, X-S Li, Y-S Wang*. Heat reduction by thermal wave crystals. International Journal of Heat and Mass Transfer 121, 215–222 (2018).
[4] K Zou, T-X Ma, Y-S Wang*. Investigation of complete bandgaps in a piezoelectric slab covered with periodically structured coatings. Ultrasonics 65, 268-276 (2016).
[3] H-W Dong, Y-S Wang*, T-X Ma, X-X Su. Topology optimization of simultaneous photonic and phononic bandgaps and highly effective phoxonic cavity. Journal of the Optical Society of America B 31, 2946-2955 (2014).
[2] X-X Su*, T-X Ma, Y-S Wang, Ch Zhang. An improvement of the filter diagonalization-based post-processing method applied to finite difference time domain calculations of three-dimensional phononic band structures. Physica Scripta 86, 045401 (2012).
[1] X-X Su*, T-X Ma, Y-S Wang. Finite difference time domain calculation of three-dimensional phononic band structures using a postprocessing method based on the filter diagonalization. Physica Scripta 84, 45404 (2011).
*通讯作者,#共同一作
了解论文详情请点击论文题目的超链接
Google Scholar主页: https://scholar.google.com/citations?user=2k0ZAkEAAAAJ&hl=en&oi=ao