李玮洁

博士、高聘教授

基本信息

办公电话: 电子邮件: wj.li@bjtu.edu.cn
通讯地址:北京市海淀区上园村3号北京交通大学 邮编:100044

教育背景

2012.9 ~ 2017.6  北京交通大学 力学系  博士(硕博连读)  导师:黄海明教授

2008.9 ~ 2012.6  兰州交通大学 工程力学系  学士

工作经历

主要研究领域为新型高温/超高温材料设计与评价、航天轻量化材料/结构开发、极端环境下复合材料性能表征方法与使役性能研究

中国复合材料学会青年工作委员会委员。入选中国科协“青年人才托举工程”,北京交通大学“卓越百人计划”、中国复合材料学会优秀博士论文获得者。

2017-2019年在北京理工大学先进结构技术研究院从事博士后研究工作。2019年11月到北京交通大学土木建筑工程学院工作。

主持国家重点研发计划课题、军委科技委基础加强项目课题、HJJ装备预研、国防技术领域基金项目专题、国家自然科学基金、航天科技合作项目等多项课题。在复合材料、力学和传热传质领域国际期刊发表SCI检索论文50余篇(2篇ESI高被引论文),授权专利10余项。

研究方向

  • 土木工程防灾减灾

招生专业

  • 土木工程博士
  • 土木工程硕士

科研项目

1. 国家重点研发课题项目:C/C蜂窝夹层结构多目标匹配设计与优化,2022.11 ~ 至今,主持

2. 军科委JCJQ重点基础研究项目:XXX热结构XXX一体化XXX,2023.9 ~ 至今,主持

3. HJJ装备预先研究项目:XXX热防护技术,2022.12 ~ 至今,主持

4. 军科委JCJQ技术领域基金课题项目:高XX连续纤维增强复合材料XX一体化技术,2022.3 ~ 至今,主持

5. 红果园省部级项目:复合材料XX结构建模与力学XX方法研究,2022.11 ~ 至今,主持

6. 航天科技合作项目XX陶瓷基复合材料烧蚀机理与XX研究,2022.9 ~ 至今,主持

7. 航天科技合作项目考虑XX材料响应数值模拟方法研究,2022.7 ~ 至今,主持

8. 航天科技合作项目材料组织表征与性能分析,2022.5 ~ 至今,主持

9. 航天科技合作项目 碳/碳复合材料样件制备与测试,2022.3 ~ 2022.6,主持

10. 航天科技合作项目:轻质防热XXX热解状态XXX分析,2022.3 ~ 至今,主持

11. 航天科技合作项目:碳纤维增强陶瓷基复合材料烧蚀XXX,2021.12 ~ 至今,主持

12. 航天科技合作项目:2.5D机织复合材料XXX无损检测与失效机理,2021.12 ~ 2022.5,主持

13. 航天科技合作项目:轻质***典型材料***机理模型研究,2020.5 ~ 2021.1,主持

14. 北京交通大学人才基金:新型防/隔热结构一体化设计方法,2020.05 ~ 2023.03,主持

15. 国家自然科学基金青年基金项目:新型高效防隔热结构一体化设计及热阻塞效应微尺度理论模型研究,2019.01 ~ 2021.12,主持

教学工作

讲授材料力学、理论力学、工程力学等。

欢迎本科生和研究生加入课题组! 

欢迎对航天领域材料/结构研发感兴趣的同学联系与报考! 

论文/期刊

已发表50余篇SCI检索论文,其中,高被引论文2篇。近五年主要论文如下:

[1] Haoran Liang, Weijie Li,*, Xiaoyan Liang, et al. Multiphase radiation mechanism based dual-scale ablation model for woven thermal protection materials[J]. Composites Science and Technology, 2024, 248: 110467.

[2] Tongkai Wang, Weijie Li*, Zhongwei Zhang, et al. Analysis of the integrated performance of hybrid fiber-reinforced polymer composite used for thermal protection based on a dual-scale ablation model[J]. Aerospace Science and Technology, 2024, 145: 108831.

[3] L.J. Guo, H.C. Wang, W.J. Li*, Z.W. Zhang*, et al. Multi-scale damage modeling and out-of-plane shear behavior of carbon/carbon honeycomb structure[J]. Thin-Walled Structures, 2023, 192: 111103.

[4] H.R. Liang, W.J. Li*,  T.K. Wang, et al. Optimal design of three-dimensional thermal protection structure considering orthotropic properties of woven composites based on Micro-CT image[J]. International Journal of Thermal Sciences, 2023, 194: 108579.

[5] L.J. Guo, H.C. Wang, Y.P. Yang, W.J. Li*, Z.W. Zhang*, et al. A multi-scale damage model and mechanical behavior for novel light-weight C/C honeycomb sandwich structure[J]. Journal of Materials Research and Technology, 2023, 25: 2097-2111.

[6] D.H. Du, W.J. Li*, Z.W. Zhang*, et al. Design of domain-limited CVI reactor for L-shaped C/C structure[J]. Journal of Materials Research and Technology, 2023, 25: 5277-5293.

[7] T.K. Wang, H.R. Liang, Z.H. Jiang, W.J. Li*, Z.W. Zhang*, et al. Influence of weaving parameters on thermal protection performance of gradient 3D woven composite[J]. Polymer Composites.

[8] 杨玉平, 张中伟*, 李玮洁*, 等. 碳/碳蜂窝制备工艺及压缩与剪切行为[J]. 复合材料学报, 2023, 41(0): 1-10.

[9] Z.H. Jiang, T.K. Wang, W.J. Li*, Z.W. Zhang*, et al. Effect of weaving parameter and resin structure of lightweight integrated multifunctional composite on thermal protection performance in extreme environment[J]. Polymer Composites, 2023, 44(8): 4509-4518.

[10] H.R. Liang, W.J. Li*, L.Y. Wang, et al. Effect of meso‐structure characteristics on surface emissivity of 2. 5D Woven ablative composite for thermal protection[J]. Polymer Composites, 2023, 44(6): 3209-3220.

[11] Z.W. Zhang#, W.J. Li#, Y.P. Yang, et al. Fabrication and compressive performance of novel lightweight C/SiC honeycomb for ultrahigh stability structures[J]. Journal of Sandwich Structures & Materials, 2023, 25(4): 462-477.

[12] W.J. Li, Z.W. Zhang, Z.H. Jiang, et al. Comprehensive performance of multifunctional lightweight composite reinforced with integrated preform for thermal protection system exposed to extreme environment[J]. Aerospace Science and Technology, 2022, 126: 107647.

[13] W.J. Li, Z.W. Zhang, M.D. Zhu, et al. Novel strategy and multi-scale modelling of integrated multifunctional composite for thermal protection under extreme environment, Applied Thermal Engineering, 2022, 209: 118313.

[14] W.J. Li, Z.W. Zhang, M.D. Zhu, et al. Heat insulation and ablation resistance performance of continuous fiber reinforced composites with integrated gradient fabric. Polymer Composites, 2022.

[15] H.Z. Duan, Z.W. Zhang*, L.B. Li, W.J. Li*. Effect of pyrocarbon interphase texture and thickness on tensile damage and fracture in T‐700™ carbon fiber–reinforced silicon carbide minicomposites. Journal of the American Ceramic Society, 2022, 105(3): 2171-2181.

[16] W.J. Li, H.R. Liang, Z.W. Zhang, J. Huang, H.M. Huang, J. Liang, Analysis of influence of fabric architecture and radiation characteristics on effective thermal conductivity of carbonized woven thermal protection composites, Acta Astronautica, 2021, 188: 387-399.

[17] W.J. Li, J. Huang, Z.W. Zhang, L.Y. Wang, H.M. Huang, J. Liang, A model for thermal protection ablative material with local thermal non-equilibrium and thermal radiation mechanisms, Acta Astronautica, 2021, 183: 101-111.

[18] W.J. Li, T.K. Wang, Z.W. Zhang, et al. Design of ablation resistant/heat insulation/lightweight integrated thermal protection material for extreme aerothermodynamic environment. Polymer Composites, 2021, 42(12): 6749-6763.

[19] W.J. Li, J. Huang, Z.W. Zhang, et al. Evaluation and design methods for high‐efficiency charring composite under complex coupling mechanisms in both material and boundary layer. Journal of Applied Polymer Science, 2021, 138(1): 49615.

[20] W.J. Li, J. Huang, Z.W. Zhang,  H.M. Huang, J. Liang, L.Y. Wang, Evaluation method and key factor analysis for thermal protection performance of multifunctional integrated ablative materials, Polymer Composites, 2020, 41(12): 5043-5058.

[21] W.J. Li, J. Huang, Z.W. Zhang, et al. Competition mechanism during oxidation of pyrolysis gases in nonequilibrium boundary layer on thermal protection performance of charring composites, Polymer Composites, 2020, 41(7): 2732-2743.

[22] Z.C. Dong, Y.B. Liu, W.J. Li*, et al. Microstructural heterogeneity of AlSi10Mg alloy lattice structures fabricated by selective laser melting: Phenomena and mechanism[J]. Journal of Alloys and Compounds, 2020: 155071.
[23] Z.C. Dong, W.J. Li*, Q. Zhang, et al. Evaluation for multiple processing parameters in selective laser melting based on an integration of mesoscale simulation and experiment method[J]. Journal of Physics D: Applied Physics, 2020, 53(14): 145501.
[24] Z.C. Dong, Y.B. Liu, W.J. Li*, J. Liang, Orientation dependency for microstructure, geometric accuracy and mechanical properties of selective laser melting AlSi10Mg lattices, Journal of Alloys and Compounds, 2019, DOI: https://doi.org/10.1016/j.jallcom.2019.03.344.
[25] W.J. Li, J.R. Ge, J. Liang. Influence factors on the multi-field coupling performances of charring ablators on the basis of a mesoscopic ablation model, Applied Thermal Engineering, 2019, 161: 114126.
[26] W.J. Li, J. Liang, J.R. Ge, Novel designs of charring composites based on pore structure control and evaluation of their thermal protection performance, International Journal of Heat & Mass Transfer, 2019, 129:59-73.
[27] W.J. Li, H.M. Huang, X.L. Xu, A coupled thermal/fluid/chemical/ablation method on surface ablation of charring composites, International Journal of Heat & Mass Transfer, 2017, 109: 724-736.
[28] W.J. Li, H.M. Huang, Z.M. Zhang, et al. Effects of gradient density on thermal protection performance of AVCOAT composites under varied heat flux. Polymer Composites, 2016, 37(4): 1034-1041. (ESI)
[29] H.M. Huang, W.J. Li. Influence factors of methane-air counterflow diffusion flame. Thermal Science, 2017, 21(4): 1689-1693.
[30] W. Li, G.D. Fang, W.J. Li, et al. Role of mesoscopic features on thermochemical ablative behavior of 3D C/C braided composites. International Journal of Heat and Mass Transfer, 2019, 144: 118602.
[31] W. Li, J. Zhang, G.D. Fang, W.J. Li. Evaluation of numerical ablation model for charring composites. Science China, 2019, DOI: https://doi.org/10.1007/s11431-018-9476-2.
[32] 李伟, 方国东, 李玮洁, 王兵, 梁军. 碳纤维增强复合材料微观烧蚀行为数值模拟. 力学学报, 2019, http://kns.cnki.net/kcms/detail/11.2062.O3.20190118.0852.006.html.

专著/译著

专利

1. 一种轻质疏导-隔热混杂编织热防护材料及制备方法  2023

2. 一种高强粗糙碳纤维及其制备方法、提高碳纤维增强碳化硅复合材料界面结合强度的方法  2023

3. 一种高温隔热用碳/碳蜂窝夹层结构及其制备方法  2022

4. 一种聚碳硅烷共混树脂热熔预浸料的制备方法  2022

5.一种热解碳界面相及其制备方法和应用、碳纤维增强碳化硅陶瓷基复合材料及其制备方法  2022

6.一种连续纤维增强热防护材料及其制备方法  2022

7.一种交替沉积的多层热解碳界面相的精细控制方法  2022

8.一种面向极端环境的热防护材料多功能协同设计方法  2022

9.一种热防护材料服役性能评价方法  2022

10. 用高能X射线进行原位成像的电控压缩试验机及试验方法  2020

11. 一种用高能X射线进行原位成像的电控压缩材料试验机  2020

12. 一种用于***的热环境***热防护结构  2013

软件著作权

变梯度PICA防热材料的热防护设计及评估软件  2016

获奖与荣誉

1. 中国科协“青年人才托举工程”  2021

2. 中国复合材料学会优秀博士学位论文奖  2018

3. 北京交通大学优秀博士位论文奖  2017

社会兼职

中国复合材料学会青年工作委员会委员