李玮洁
博士、高聘教授
博士、高聘教授
办公电话: | 电子邮件: wj.li@bjtu.edu.cn |
通讯地址:北京市海淀区上园村3号北京交通大学 | 邮编:100044 |
2012.9 ~ 2017.6 北京交通大学 力学系 博士(硕博连读) 导师:黄海明教授
2008.9 ~ 2012.6 兰州交通大学 工程力学系 学士
主要研究领域为新型高温/超高温材料设计与评价、航天轻量化材料/结构开发、极端环境下复合材料性能表征方法与使役性能研究。
中国复合材料学会青年工作委员会委员。入选中国科协“青年人才托举工程”,北京交通大学“卓越百人计划”、中国复合材料学会优秀博士论文获得者。
2017-2019年在北京理工大学先进结构技术研究院从事博士后研究工作。2019年11月到北京交通大学土木建筑工程学院工作。
主持国家重点研发计划课题、军委科技委基础加强项目课题、HJJ装备预研、国防技术领域基金项目专题、国家自然科学基金、航天科技合作项目等多项课题。在复合材料、力学和传热传质领域国际期刊发表SCI检索论文50余篇(2篇ESI高被引论文),授权专利10余项。
1. 国家重点研发课题项目:C/C蜂窝夹层结构多目标匹配设计与优化,2022.11 ~ 至今,主持
2. 军科委JCJQ重点基础研究项目:XXX热结构XXX一体化XXX,2023.9 ~ 至今,主持
3. HJJ装备预先研究项目:XXX热防护技术,2022.12 ~ 至今,主持
4. 军科委JCJQ技术领域基金课题项目:高XX连续纤维增强复合材料XX一体化技术,2022.3 ~ 至今,主持
5. 红果园省部级项目:复合材料XX结构建模与力学XX方法研究,2022.11 ~ 至今,主持
6. 航天科技合作项目:XX陶瓷基复合材料烧蚀机理与XX研究,2022.9 ~ 至今,主持
7. 航天科技合作项目:考虑XX材料响应数值模拟方法研究,2022.7 ~ 至今,主持
8. 航天科技合作项目:材料组织表征与性能分析,2022.5 ~ 至今,主持
9. 航天科技合作项目: 碳/碳复合材料样件制备与测试,2022.3 ~ 2022.6,主持
10. 航天科技合作项目:轻质防热XXX热解状态XXX分析,2022.3 ~ 至今,主持
11. 航天科技合作项目:碳纤维增强陶瓷基复合材料烧蚀XXX,2021.12 ~ 至今,主持
12. 航天科技合作项目:2.5D机织复合材料XXX无损检测与失效机理,2021.12 ~ 2022.5,主持
13. 航天科技合作项目:轻质***典型材料***机理模型研究,2020.5 ~ 2021.1,主持
14. 北京交通大学人才基金:新型防/隔热结构一体化设计方法,2020.05 ~ 2023.03,主持
15. 国家自然科学基金青年基金项目:新型高效防隔热结构一体化设计及热阻塞效应微尺度理论模型研究,2019.01 ~ 2021.12,主持
讲授材料力学、理论力学、工程力学等。
欢迎本科生和研究生加入课题组!
欢迎对航天领域材料/结构研发感兴趣的同学联系与报考!
已发表50余篇SCI检索论文,其中,高被引论文2篇。近五年主要论文如下:
[1] Haoran Liang, Weijie Li,*, Xiaoyan Liang, et al. Multiphase radiation mechanism based dual-scale ablation model for woven thermal protection materials[J]. Composites Science and Technology, 2024, 248: 110467.
[2] Tongkai Wang, Weijie Li*, Zhongwei Zhang, et al. Analysis of the integrated performance of hybrid fiber-reinforced polymer composite used for thermal protection based on a dual-scale ablation model[J]. Aerospace Science and Technology, 2024, 145: 108831.
[3] L.J. Guo, H.C. Wang, W.J. Li*, Z.W. Zhang*, et al. Multi-scale damage modeling and out-of-plane shear behavior of carbon/carbon honeycomb structure[J]. Thin-Walled Structures, 2023, 192: 111103.
[4] H.R. Liang, W.J. Li*, T.K. Wang, et al. Optimal design of three-dimensional thermal protection structure considering orthotropic properties of woven composites based on Micro-CT image[J]. International Journal of Thermal Sciences, 2023, 194: 108579.
[5] L.J. Guo, H.C. Wang, Y.P. Yang, W.J. Li*, Z.W. Zhang*, et al. A multi-scale damage model and mechanical behavior for novel light-weight C/C honeycomb sandwich structure[J]. Journal of Materials Research and Technology, 2023, 25: 2097-2111.
[6] D.H. Du, W.J. Li*, Z.W. Zhang*, et al. Design of domain-limited CVI reactor for L-shaped C/C structure[J]. Journal of Materials Research and Technology, 2023, 25: 5277-5293.
[7] T.K. Wang, H.R. Liang, Z.H. Jiang, W.J. Li*, Z.W. Zhang*, et al. Influence of weaving parameters on thermal protection performance of gradient 3D woven composite[J]. Polymer Composites.
[8] 杨玉平, 张中伟*, 李玮洁*, 等. 碳/碳蜂窝制备工艺及压缩与剪切行为[J]. 复合材料学报, 2023, 41(0): 1-10.
[9] Z.H. Jiang, T.K. Wang, W.J. Li*, Z.W. Zhang*, et al. Effect of weaving parameter and resin structure of lightweight integrated multifunctional composite on thermal protection performance in extreme environment[J]. Polymer Composites, 2023, 44(8): 4509-4518.
[10] H.R. Liang, W.J. Li*, L.Y. Wang, et al. Effect of meso‐structure characteristics on surface emissivity of 2. 5D Woven ablative composite for thermal protection[J]. Polymer Composites, 2023, 44(6): 3209-3220.
[11] Z.W. Zhang#, W.J. Li#, Y.P. Yang, et al. Fabrication and compressive performance of novel lightweight C/SiC honeycomb for ultrahigh stability structures[J]. Journal of Sandwich Structures & Materials, 2023, 25(4): 462-477.
[12] W.J. Li, Z.W. Zhang, Z.H. Jiang, et al. Comprehensive performance of multifunctional lightweight composite reinforced with integrated preform for thermal protection system exposed to extreme environment[J]. Aerospace Science and Technology, 2022, 126: 107647.
[13] W.J. Li, Z.W. Zhang, M.D. Zhu, et al. Novel strategy and multi-scale modelling of integrated multifunctional composite for thermal protection under extreme environment, Applied Thermal Engineering, 2022, 209: 118313.
[14] W.J. Li, Z.W. Zhang, M.D. Zhu, et al. Heat insulation and ablation resistance performance of continuous fiber reinforced composites with integrated gradient fabric. Polymer Composites, 2022.
[15] H.Z. Duan, Z.W. Zhang*, L.B. Li, W.J. Li*. Effect of pyrocarbon interphase texture and thickness on tensile damage and fracture in T‐700™ carbon fiber–reinforced silicon carbide minicomposites. Journal of the American Ceramic Society, 2022, 105(3): 2171-2181.
[16] W.J. Li, H.R. Liang, Z.W. Zhang, J. Huang, H.M. Huang, J. Liang, Analysis of influence of fabric architecture and radiation characteristics on effective thermal conductivity of carbonized woven thermal protection composites, Acta Astronautica, 2021, 188: 387-399.
[17] W.J. Li, J. Huang, Z.W. Zhang, L.Y. Wang, H.M. Huang, J. Liang, A model for thermal protection ablative material with local thermal non-equilibrium and thermal radiation mechanisms, Acta Astronautica, 2021, 183: 101-111.
[18] W.J. Li, T.K. Wang, Z.W. Zhang, et al. Design of ablation resistant/heat insulation/lightweight integrated thermal protection material for extreme aerothermodynamic environment. Polymer Composites, 2021, 42(12): 6749-6763.
[19] W.J. Li, J. Huang, Z.W. Zhang, et al. Evaluation and design methods for high‐efficiency charring composite under complex coupling mechanisms in both material and boundary layer. Journal of Applied Polymer Science, 2021, 138(1): 49615.
[20] W.J. Li, J. Huang, Z.W. Zhang, H.M. Huang, J. Liang, L.Y. Wang, Evaluation method and key factor analysis for thermal protection performance of multifunctional integrated ablative materials, Polymer Composites, 2020, 41(12): 5043-5058.
[21] W.J. Li, J. Huang, Z.W. Zhang, et al. Competition mechanism during oxidation of pyrolysis gases in nonequilibrium boundary layer on thermal protection performance of charring composites, Polymer Composites, 2020, 41(7): 2732-2743.
[22] Z.C. Dong, Y.B. Liu, W.J. Li*, et al. Microstructural heterogeneity of AlSi10Mg alloy lattice structures fabricated by selective laser melting: Phenomena and mechanism[J]. Journal of Alloys and Compounds, 2020: 155071.1. 一种轻质疏导-隔热混杂编织热防护材料及制备方法 2023
2. 一种高强粗糙碳纤维及其制备方法、提高碳纤维增强碳化硅复合材料界面结合强度的方法 2023
3. 一种高温隔热用碳/碳蜂窝夹层结构及其制备方法 2022
4. 一种聚碳硅烷共混树脂热熔预浸料的制备方法 2022
5.一种热解碳界面相及其制备方法和应用、碳纤维增强碳化硅陶瓷基复合材料及其制备方法 2022
6.一种连续纤维增强热防护材料及其制备方法 2022
7.一种交替沉积的多层热解碳界面相的精细控制方法 2022
8.一种面向极端环境的热防护材料多功能协同设计方法 2022
9.一种热防护材料服役性能评价方法 2022
10. 用高能X射线进行原位成像的电控压缩试验机及试验方法 2020
11. 一种用高能X射线进行原位成像的电控压缩材料试验机 2020
12. 一种用于***的热环境***热防护结构 2013
1. 中国科协“青年人才托举工程” 2021
2. 中国复合材料学会优秀博士学位论文奖 2018
3. 北京交通大学优秀博士位论文奖 2017