孟祥云

博士、副教授

基本信息

办公电话: 电子邮件: xymeng1@bjtu.edu.cn
通讯地址: 邮编:

教育背景

2011.09 - 2016.07 北京大学,计算数学,直博

2007.09 - 2011.07 吉林大学,信息与计算科学,本科

工作经历

2021.01 至今 北京交通大学,副教授
2019.07 - 2020.12 北京交通大学,讲师
2018.09 - 2018.12 University of Limerick,访问学者
2016.07 - 2019.07 中国工程物理研究院,博士后

研究方向

  • 计算数学
  • 应用数学

招生专业

  • 数学硕士

科研项目

国家自然科学基金青年项目, 2022/01-2024/12, 主持

教育部中央高校科研业务专项资助, 2020/01-2021/12, 主持

国家自然科学基金青年项目, 2018/01-2020/12, 参与

国家自然科学基金面上项目, 2015/01-2018/12, 参与

教学工作

本科生课程:《数值计算》 等

研究生课程:《数值分析》 等

论文/期刊

Selected publications:

  • Meng X, Stynes M. Balanced and energy norm error bounds for a spatial FEM with Crank-Nicolson and BDF2 time discretisation applied to a singularly perturbed reaction-diffusion problem. Numerical Algorithms, 2023: 1-22.

  • Meng X, Stynes M. Energy-norm and balanced-norm supercloseness error analysis of a finite volume method on Shishkin meshes for singularly perturbed reaction–diffusion problems. Calcolo, 2023, 60(40): 1-37.

  • Wang Y, Li Y, Meng X. An upwind finite volume element method on a Shishkin mesh for singularly perturbed convection–diffusion problems. Journal of Computational and Applied Mathematics, 2023: 115493.
  • Meng X, Stynes M. Balanced-Norm and Energy-Norm Error Analyses for a Backward Euler/FEM Solving a Singularly Perturbed Parabolic Reaction-Diffusion Problem. Journal of Scientific Computing, 2022, 92(2): 67.
  • Wang Y, Meng X, Li Y. The Bogner-Fox-Schmit Element Finite Volume Methods on the Shishkin Mesh for Fourth-Order Singularly Perturbed Elliptic Problems. Journal of Scientific Computing, 2022, 93(1): 4.
  • Wang Y, Meng X, Li Y. The finite volume element method on the shishkin mesh for a singularly perturbed reaction–diffusion problem. Computers & Mathematics with Applications, 2021, 84: 112-127.

  • Meng X, Stynes M. Barrier function local and global analysis of an L1 finite element method for a multiterm time-fractional initial-boundary value problem. Journal of Scientific Computing, 2020, 84(1): 1-16.
  • Kopteva N, Meng X. Error analysis for a fractional-derivative parabolic problem on quasi-graded meshes using barrier functions, SIAM Journal on Numerical Analysis, 2020, 58(2): 1217-1238.
  • Meng X, Stynes M. Convergence analysis of the Adini element on a Shishkin mesh for a singularly perturbed fourth-order problem in two dimensions. Advances in Computational Mathematics, 2019, 45(2): 1105-1128.