朱力

博士、教授

基本信息

办公电话:010-51688247 电子邮件: zhuli@bjtu.edu.cn
通讯地址:北京交通大学土木工程楼606室 邮编:100044

教育背景

2009-2014  清华大学获博士学位(导师: 聂建国, 中国工程院院士, 清华大学学术委员会主任)

2005-2009  中南大学获学士学位 (排名: 1/472)


工作经历

2023至今    北京交通大学  教授

2022至今    北京交通大学  博士生导师

2019-2022  北京交通大学  副教授

2016-2018  北京交通大学  讲师

2016-2017  北京交通大学  美国伊利诺伊大学香槟分校 博士后 (合作导师: Billie F. Spencer, 中国工程院外籍院士)

2014-2016  北京交通大学  博士后


研究方向

  • 桥梁工程
  • 土木工程
  • 智能建造

招生专业

  • 土木工程硕士
  • 土木工程博士
  • 人工智能硕士

科研项目

主持纵向科研项目:

[9]    国家重大青年人才项目:高性能材料组合桥梁全生命周期受力性能和管养措施优化方法, 2024-2026.

[8]    国家重点研发计划“川藏铁路”重点专项项目(子课题): 川藏铁路高海拔深切峡谷区大跨度拱桥建造关键技术研究——复杂环境大跨度铁路拱桥施工全过程抗风安全控制技术研究, 2023-2026.

[7]    国家重点研发计划“川藏铁路”重点专项项目(任务): 高海拔深切峡谷区千米级大跨度悬索桥建造及耐久性保持关键技术研究——高原环境下大跨度铁路悬索桥上部结构精细化计算程序研发, 2022-2023.

[6]    河北省中央引导地方科技发展资金: 基于光纤传感的桥梁支座监测系统与安全评价, 2022-2024.

[5]    高速铁路建造技术国家工程实验室开放基金课题: 高铁轨道-桥梁结构桥梁支座更换数值仿真与智能更换技术. 2021-2023.

[4]    国家自然科学基金"青年基金": 曲线组合箱梁桥考虑多种力学、几何和时变效应的梁单元模型及长期性能分析, 2017-2019.

[3]    基本科研业务费(重点项目): 高速铁路大跨钢-混凝土组合连续桥梁结构全寿命周期设计理论与方法, 2018-2022.

[2]    基本科研业务费 (人才基金): 组合箱梁桥的杆系模型和简化分析方法, 2016-2017.

[1]    基本科研业务费 (一般项目): 波形钢腹板组合桥的一维梁理论模型和时变行为分析, 2015-2016.

 

主持横向科研项目:

[10]  桥梁关键约束装置微振动视觉增强监测技术研究. 2024.

[9]    缓黏结低回缩锚索在混凝土箱梁中动载状况下固化及相关性能研究. 2024.

[8]    深中通道项目BIM成果汇编服务. 2023-2024.

[7]    张靖皋长江大桥刚性接头承载力智能预测软件研发. 2023-2024.

[6]    铁路钢混组合结构桥梁动力性能分析. 2022-2023.

[5]    沉管隧道节点合理构造试验研究. 2021-2022.

[4]    盐渍土地区桥涵基础施工技术指南编制. 2021-2022.

[3]    西藏地区耐候工字钢组合梁桥建设关键技术研究. 2021-2022.

[2]    雄安新区装配式管廊试验工程抗震性能试验. 2020.

[1]    曲线钢混组合梁桥负弯矩区抗裂试验研究. 2018-2019.


教学工作

主讲本科生课程

   《弹性力学及有限元》

   《建筑信息模型基础


主讲研究生课程

   《建筑信息模型(BIM)高级应用

   《桥梁组合结构理论及应用》

   《Bridge Engineering》


论文/期刊

期刊论文

[76] Li WW, Zhao LJ, Liu W, Zhu L*, Li P, Zhao GY, Zhu YY. Study on shear performance of discontinuous PBL connectors with double holes. Alexandria Engineering Journal, 2024, 88: 45-57.

[75] Li J, Zhu L*, Ji WY, You SF. Development of a software platform for bridge modal and damage identification based on ambient excitation. High-Speed Railway, 2023, 1: 162-170.

[74] Zhu L*, Su RKL, Liu W, Han TN, Chen C. Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering shear lag, constrained torsion, distortion and biaxial slip. Steel and Composite Structures, 2023, 48(2): 207-233.

[73] Tang QC, Zhu L*. Vibration control of the steel-concrete composite box girder bridge with slip and shear-lag effects by MTMDs under train-bridge. Structural Control and Health Monitoring, 2023, doi.org/10.1155/2023/6696148.

[72] Huo X, Chen J, Wang D, Zhu L*. A method for calculating strand tension in the anchor span of a suspension bridge considering the rotation of a splay saddle. High-Speed Railway, 2023, 1: 56-62.

[71] Zhao G, Wang Y*, Zhu L*, Zhao J. Shear behavior of prestressed concrete T-beams strengthened by steel plate-concrete composite. Engineering Structures, 2023, 291: 116440.

[70] Zhao GY, Zhu L*, Liu W, Zhao JC, Huo JX. Numerical study on the effect of interface dynamic damage of steel-concrete composite beam bridge caused by high-frequency impact load. Buildings, 2023, 13(1): 545.

[69] 朱力*, 郭甲超, 季文玉, 查诚. 支座更换对高速铁路梁轨结构的影响分析. 铁道技术标准, 2023, 5(3): 33-44.

[68] Zhu E, Li T, Liu L, Zhu L, Tian Y. Bond slip behavior of grout-filled concrete members with different interface materials. Advances in Materials Science and Engineering, 2022, doi.org/10.1155/2022/1235843.

[67] 刘一迪, 朱力*, 陈曦, 季文玉. 基于BIM的桥梁有限元模型转换与结构分析, 2022年工业建筑学术交流会, 北京, 2022.

[66] Lu W, Li F, Zhu L*, Li W, Peng W, Tang Y, Zhou Y, Su W, Zeng B. Study on the shear behavior of externally prestressed segmental glued concrete beams. Structures, 2023, 53: 47-61.

[65] Lu W, Li F, Zhu L*, Zhang T, Zhou Y, Peng W, Zeng B. Experimental study on the direct shear behavior of multiple shear keys at concrete glue joints subjected to uneven normal stress. Structure and Infrastructure Engineering, 2023, doi.org/10.1080/15732479.2023.2191207.

[64] Zhu L*, Zhao GY, Su RKL, Liu W, Wang GM. Time-dependent creep and shrinkage analysis of curved steel–concrete composite box beams. Mechanics of Advanced Materials and Structures, 2023, 30(3): 563-581.

[63] Tang QC, Zhu L*, Li JZ. Hybrid control of steel-concrete composite girder bridges considering the slip and shear-lag effects with MR–TMD based on train-bridge interactions. Structures, 2023, 47: 2300-2318.

[62] Liu L, Zhang L, Zhu L*, Li J, Yang Y, Hao L. Study on mechanical properties of stud connectors in steel-lightweight aggregate concrete composite structures. Structures, 2023, 47: 1072-1085.

[61] Zhu L*, Su RKL, Ma JJ, Ni YJ. Experimental case study on the fatigue behavior of steel-concrete composite beams after chloride-induced corrosion and cyclic freeze-thaw. Journal of Bridge Engineering, 2023, 28(1): 05022012.

[60] Zhao GY, Zhu L*, Liu W, Zhao JC, Huo JX. Numerical study on the effect of interface dynamic damage of steel-concrete composite beam bridge caused by high-frequency impact load. Buildings, 2023, 13: 545.

[59] Liu W, Zhu L*, Ling LP, Zhao GY, Gao XB. Experimental and numerical study on the ultimate bearing capacity of a K-type tube-gusset plate joint of a steel transmission tower. Case Studies in Construction Materials, 2022, 17: e1523.

[58] Lu WL, Li FL, Zhu L*, Wen CT, Peng WQ. Experimental study on the shear behavior of precast concrete segmental simply supported beam with internal tendons and glue joints. Case Studies in Construction Materials, 2022, 17: e1545.

[57] Lu WL, Peng WQ, Zhu L*, Ma B, Li FL. Study on mechanical behavior of steel-UHPC-NC composite beams under negative bending moment. Case Studies in Construction Materials, 2022, 17: e1593.

[56] Zhao GY, Liu W, Zhu L*, Li JH, Gao XB. Experimental and numerical study on the stable bearing capacity of steel tubular cross bracing of a transmission tower. Case Studies in Construction Materials, 2022, 17: e1577.

[55] Lu WL, Peng WQ, Zhu L*, Gao C, Tang YD, Zhou YW, Su W, Zeng B. Experimental and numerical study of static behavior of precast segmental hollow bridge piers. Materials, 2022, 15: 6991.

[54] Gao C, Zhu L*, Han B, Tang QC, Su R. Dynamic analysis of a steel-concrete composite box‐girder bridge-train coupling system considering slip, shear‐lag and time‐dependent effects. Buildings, 2022, 12: 1389.

[53] Zhu YY, Song SY*, Liu W, Guo YW, Zhu L*, Li JX. Experimental and numerical investigation of the cross-sectional mechanical behavior of a steel-concrete immersed tube tunnel. Buildings, 2022, 12: 1553.

[52] Zhao GY, Zhu L, Wu SW*, Liu W, Duan SJ. Experimental and numerical investigation on the cross-sectional mechanical behavior of prefabricated multi-cabin RC utility tunnels. Structures, 2022, 42: 466-479.

[51] 刘俊鹏, 司金艳, 赵佳成, 唐庆宸, 朱力*, 任效佐. 重载铁路桥梁抗剪加固措施. 铁道建筑, 2022, 62(5): 94-98.

[50] Zhu L, Wang Y*, Zhou GP, Han B. Structural health monitoring on a steel-concrete composite continuous bridge during construction and vehicle load tests. Mechanics of Advanced Materials and Structures, 2022, 29(10): 1370-1385.

[49] Ji XL, Zhu L*, Su RKL, Wang GM. Lateral overturning process and failure mechanism of curved steel-concrete composite box-girder bridges under specific overloading vehicles. Structures, 2022, 35: 638-649.

[48] Peng H, Tang Q, Zhu L*, Li Z, Li H, Wang G. Deformation control of subway stations under the influence of the construction of deep and large foundation pits with composite support systems. Applied Sciences, 2022, 12(6): 3026.

[47] Zhu L*, Su RKL, Huo JX, Wang GM. Test of the long-term behavior of curved steel-concrete composite box beams: case study. Journal of Bridge Engineering, 2021, 26(9): 05021009.

[46] Zhu L, Li TS, Wang Y*, Tang QC, Wang GM, Zhang ZD. Experimental and numerical study on T-Shaped UHPFRC beams with high-strength reinforcement. Structural Concrete, 2021, 22: 3630-3645.

[45] Zhu L*, Wang JJ, Li MJ. Finite beam element with 26 DOFs for curved composite box girders considering constrained torsion, distortion, shear lag and biaxial slip. Engineering Structures, 2021, 232: 111797.

[44] Zhu L, Ma Q, Yan WT*, Han B. Effective width of steel-concrete composite beams under negative moments in service stages. Steel and Composite Structures, 2021, 38(4): 415-430.

[43] 王光明, 季鑫霖, 朱力*, 季文玉, 杨顺达. 曲线钢-混凝土组合箱梁桥的爬移行为. 北京交通大学学报 (自然科学版), 2021, 45(1): 126-135. 

[42] Zhu L, Wang HL*, Han B, Zhao GY, Huo XJ, Ren XZ. Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering slip and shear-lag. Thin-Walled Structures, 2020, 157: 107060.

[41] Zhu L, Wang JJ*, Li X, Tang L, Yu BY. Experimental and numerical study of curved SFRC and ECC composite beams with various connectors. Thin-Walled Structures, 2020, 155: 106938.

[40] Zhu L, Wang JJ*, Li MJ, Chen C, Wang GM. Finite beam element with 22 DOF for curved composite box girders considering torsion, distortion, and biaxial slip. Archives of Civil and Mechanical Engineering, 2020, 20: 101.

[39] Zhu L*, Wang JJ, Zhao GY, Huo XJ, Li X. Experimental and numerical study on large-curvature curved composite box girder under hogging moment. Steel and Composite Structures, 2020, 37(2): 117-136.

[38] Zhu L, Wang JJ*, Li X, Zhao GY, Huo XJ. Experimental and numerical study on creep and shrinkage effects of ultra high-performance concrete beam. Composites Part B, 2020, 184: 107713.

[37] Wang GM, Zhu L*, Zhou GP, Han B, Ji WY. Experimental research of the time-dependent effects of steel-concrete composite girder bridges during construction and operation periods. Materials, 2020, 13(9): 2123.

[36] Wang GM, Zhu L*, Ji XL, Ji WY. Finite beam element for curved steel–concrete composite box beams considering time-dependent effect. Materials, 2020, 13(15): 3253.

[35] Jiao YY, Han B*, Xie HB, Zhu L, Zhou LD. Early-age creep behavior of Concrete-Filled Steel Tubular members subjected to axial compression. Journal of Constructional Steel Research, 2020, 166: 105939.

[34] Li WW*, Ji WY, An MZ, Zhu L, Wang J. Flexural performance of composite prestressed UHPC-NC T-girders. ASCE-Journal of Bridge Engineering, 2020, 25(9): 04020064.

[33] Yan W, Han B*, Xie HB, Li PF, Zhu L. Research on numerical model for flexural behaviors analysis of precast concrete segmental box girders. Engineering Structures, 2020, 219: 110733.

[32] 李旺旺*, 季文玉, 朱力, 班新林, 刘昂, 顾金柱. 重载车桥耦合作用下48m钢桁梁桥动力性能. 铁道工程学报, 2020, 37(1): 31-37+61.

[31] Yan WT, Han B*, Zhu L, Jiao YY, Xie HB. A fiber beam element model for elastic-plastic analysis of girders with shear lag effects. Steel and Composite Structures, 2019, 32(5): 657-670.

[30] 朱力*, 李明杰, 陈超, 孙海秀, 韩冬, 赵元鹏. 曲线钢-混凝土组合箱形梁的约束扭转、畸变和界面双向滑移效应. 建筑结构学报, 2019, 40(S1): 299-307.

[29] Zhou G*, Li A, Li J, Duan M, Xia ZY, Zhu L, Spencer BF, Wang B. Test and numerical investigations on the spatial mechanics characteristics of extra-wide concrete self-anchored suspension bridge during construction. International Journal of Distributed Sensor Networks, 2019, 15(12): 1177.

[28] Zhou G*, Li A, Li J, Duan M, Xia Z, Zhu L. Determination and implementation of reasonable completion state for the self-anchored suspension bridge with extra-wide concrete girder. Applied Sciences, 2019, 9(12): 2576.

[27] Han B*, Yan WT, Cu VH, Zhu L, Xie HB. H-TMD with hybrid control method for vibration control of long span cable-stayed bridge. Earthquakes and Structures, 2019, 16(3): 349-359.

[26] Zhou G*, Li A, Li J, Duan M, Spencer BF, Zhu L. Beam finite element including shear lag effect of extra-wide concrete box girders. ASCE-Journal of Bridge Engineering, 2018, 23(11): 04018083.

[25] Yan WT, Han B*, Jin Q. Zhang JQ, Xie HB, Zhu L, Xue ZJ. Experimental study on creep behavior of fly ash concrete filled steel tube circular arches. Steel and Composite Structures, 2018, 27(2): 185-192.

[24] Zhang J, Han B*, Xie H, Zhu L, Zheng G, Wang W. Correlation between coda wave and stresses in uni-axial compression concrete, Applied Sciences, 2018, 8(9): 1609.

[23] Zhu L, Fu Y, Chow R, Spencer BF*, Park JW, Mechitov K. Development of a high-sensitivity wireless accelerometer for structural health monitoring. Sensors, 2018, 18(1): 262.

[22] Han B*, Xie HB, Yan WT, Lei DC, Zhu L, Wang YQ, Li H. Scour risk analysis of existing bridge pier based on inversion theory. Structural Engineering International, 2018, 28(1), 35-43.

[21] Zhu L, Su RKL*. Analytical solutions for composite beams with slip, shear-lag and time-dependent effects. Engineering Structures, 2017, 152, 559-578.

[20] Zhu L*, Nie J, Ji W. Positive and negative shear lag behaviors of composite twin-girder decks with varying cross-section. Science China Technological Sciences, 2017, 60(1): 116-132.

[19] Ji W, Li W*, An M, Zhu L. Shear capacity of T-section girders made of reactive powder concrete.  ASCE-Journal of Bridge Engineering, 2018, 23(7): 04018041.

[18] 季文玉, 李旺旺*, 付尧, 卢文良, 朱力. 预应力活性粉末混凝土受弯过程声发射特性. 复合材料学报, 2018, 35(10): 2860-2870.

[17] Han B*, Xie HB, Zhu L, Jiang P. Nonlinear model for early age creep of concrete under compression strains. Construction and Building Materials, 2017, 147: 203-211.

[16] Han B*, Jiao Y, Xie H, Zhu L. Creep of compression fly ash concrete-filled steel tubular members. Thin-walled structures, 2017, 114: 116-121.

[15] 朱力*, 聂建国, 季文玉. 钢-混凝土组合箱型梁的滑移和剪力滞效应. 工程力学, 2016, 33(9): 49-58.

[14] Zhu L*, Nie J, Li F, Ji W. Simplified analysis method accounting for shear-lag effect of steel-concrete composite decks. Journal of Constructional Steel Research, 2015, 115: 62-80.

[13] 聂建国*, 陶慕轩, 聂鑫, 樊健生, 张振学, 汤洪雁, 朱力, 李一昕. 抗拔不抗剪连接新技术及其应用. 土木工程学报, 2015, 48(4): 7-14.

[12] Nie J, Zhu L*. Beam-truss model of steel-concrete composite box-girder bridges. ASCE-Journal of Bridge Engineering, 2014, 19(7): 04014023.

[11] Nie J, Zhu L*. Lateral stiffness of steel plate shear walls. Science China Technological Sciences, 2014, 57(1): 151-162.

[10] 聂建国*, 朱力, 樊健生, 李法雄. 钢-混凝土组合箱梁桥杆系模型的工程应用. 中国公路学报, 2014, 27(9): 32-40.

[9]   聂建国*, 朱力, 樊健生, 杨小刚. 钢-混凝土组合箱梁桥杆系模型的理论与计算. 中国公路学报, 2014, 27(7): 32-44.

[8]   Nie J, Zhu L*, Fan J, Mo Y. Lateral resistance capacity of stiffened steel plate shear walls. Thin-Walled Structures, 2013, 67: 155-167.

[7]   Nie J, Zhu L*, Tao M, Tang L. Shear strength of trapezoidal corrugated steel webs. Journal of Constructional Steel Research, 2013, 85: 105-115.

[6]   朱力*, 聂建国, 樊健生. 开洞钢板剪力墙的抗侧刚度分析. 工程力学, 2013, 30(9): 200-210.

[5]   聂建国, 朱力*, 樊健生, 范重, 刘学林. 开洞加劲钢板剪力墙的抗侧承载力分析. 建筑结构学报, 2013, 34 (7): 1-10.

[4]   朱力, 蔡建军*, 聂建国. 波形钢腹板的弹性剪切屈曲强度. 工程力学, 2013, 30(7): 40-46.

[3]   聂建国*, 朱力, 唐亮. 波形钢腹板的抗剪强度. 土木工程学报, 2013, 46(6): 1-13.

[2]   聂建国*, 朱力, 樊健生, 范重, 刘学林. 钢板剪力墙抗震性能试验研究. 建筑结构学报, 2013, 34(1): 61-69.

[1]   张振学*, 聂建国, 陶慕轩, 朱力. 钢-混凝土连续组合桁梁桥受力性能优化. 桥梁建设, 2012, 42(6): 57-62.


会议报告

[16] 铁路钢-混组合桥梁的振动控制. 第一届山区铁路建造与防灾学术研讨会暨2023深水大跨桥梁新进展研讨会, 2023, 12, 成都.

[15] 考虑滑移和剪力滞效应的组合箱梁桥-列车耦合系统动力分析. 第五届江苏省工程师学会风工程学术会议暨基础设施智能抗风防灾及韧性提升国际论坛, 2023, 6, 南京.

[14] 曲线钢-混凝土组合桥梁的高效计算模型、关键设计理论和工程应用. 中国公路学会桥梁和结构工程分会, 2023, 4, 珠海.

[13] Numerical simulation of interface slip of steel-concrete composite beam. The 4th International Conference on Civil Architecture and Urban Engineering. ICCAUE 2022, June, China. 

[12] Experimental and Numerical Study of Curved SFRC and ECC Composite Beams with Various Connectors. Proceedings of International Association for Bridge and Structural Engineering, 2022, September, Nanjing.

[11] Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering slip and shear-lag. The 4th International conference on Engineering Innovation and Seismic Mitigation of Bridges, 2021, November, Changsha.

[10] 曲线钢-混凝土组合箱形梁的约束扭转、畸变和界面双向滑移效应. 中国钢结构协会钢-混凝土组合结构分会第十七次学术会议, 2019, 11, 南京.

[9]   变截面钢-混凝土组合梁的剪力滞效应. 中国钢结构协会钢-混凝土组合结构分会第十六次学术会议, 2017, 11, 北京.

[8]   Earthquake Monitoring of Civil Infrastructure using Wireless Smart Sensors. 3rd Huixian International Forum on Earthquake Engineering for Young Researchers, 2017, August, University of Illinois at Urbana-Champaign, US.

[7]   Negative shear-lag behavior of steel-concrete composite twin-girder decks. 14th International Symposium on Structural Engineering, 2016, October, Beijing, China.

[6]   Shear Strength of Trapezoidal Corrugated Steel Webs. 5th International Conference on Civil Engineering and Transportation, 2015, November, Guangzhou, China.

[5]   钢-混凝土组合箱梁桥杆系模型的研究. 中国钢结构协会钢-混凝土组合结构分会第十五次学术会议, 2015, 10, 重庆.

[4]   Lateral resistance capacity of stiffened steel plate shear walls. Pacific Structural Steel Conference, 2013, October, Singapore.

[3]   Lateral stiffness of steel plate shear walls. Pacific Structural Steel Conference, 2013, October, Singapore.

[2]   Seismic behavior of steel plate shear walls. Proceedings of Seventh International Conference on Advances in Steel Structures, 2012, April, Nanjing, China.

[1]   波形钢腹板的弹性合成剪切屈曲强度. 中国钢结构协会钢-混凝土组合结构分会第十三次学术会议, 2011, 11, 广州.


专著/译著

[2]  朱力, 刘智敏. 建筑信息模型 (BIM) 高级技术与应用. 清华大学出版社/北京交通大学出版社, 2023.

[1]  朱力. 钢混组合桥梁结构的计算模型及设计方法. 中国铁道出版社, 2021.


专利

[14] 朱力, 赵冠远, 霍金鑫, 季鑫霖, 刘一迪, 赵利佳. 一种基于多种复杂力学效应的车桥耦合动力分析系统. 中国, 国家知识产权局, ZL202111584474.1

[13] 朱力, 赵冠远, 韩天楠, 段胜杰, 查诚, 张维举. 基于力学效应的车桥耦合用振动分析系统. 中国, 国家知识产权局, ZL202111538296.9

[12] 朱力, 赵冠远, 李嘉欣, 尤孙锋, 李佳欢, 李双宇. 一种基于数值分析的连接件组合梁分析系统. 中国, 国家知识产权局, ZL202111495413.8

[11] 朱力, 赵冠远, 刘伟, 苏瑞, 赵佳成, 郭甲超. 一种基于曲线组合梁模型的混凝土精度管控系统. 中国, 国家知识产权局, ZL202111463654.4

[10] 朱力, 赵冠远, 吕荣, 唐庆宸, 陈曦, 张晓虎. 一种基于钢筋应力的裂缝宽度纤维梁分析系统. 中国, 国家知识产权局, ZL202210000657.2

[9]   朱力, 韩天楠, 赵佳成, 王光明, 司金艳, 王灏. 一种曲线钢-混凝土组合梁的连接构造. 中国, 国家知识产权局, ZL202221453723.3

[8]   朱力, 唐庆宸, 吕荣, 王光明, 司金艳, 王灏. 一种曲线钢-混凝土组合梁的剪力连接件. 中国, 国家知识产权局, ZL202221412317.2

[7]   朱力, 吕荣, 韩天楠, 司金艳, 王光明, 王灏. 拼接型装配式曲线钢-混凝土组合梁. 中国, 国家知识产权局, ZL202221412269.7

[6]   朱力, 杜谷春, 李明杰, 李轩, 赵旭. 大曲率曲线钢-混凝土组合箱梁桥简化设计方法. 中国, 国家知识产权局, ZL201810461830.2

[5]   朱力, 李明杰, 陈超, 唐亮, 张甲振, 田超. 曲线钢-混凝土组合箱型梁一维梁单元模型的建立方法. 中国, 国家知识产权局, ZL201910602286.3

[4]   朱力, 李明杰, 季文玉, 李轩. 曲线钢-混凝土组合箱型梁一维有限元模型的构建方法. 中国, 国家知识产权局, ZL201910315189.6

[3]   朱力, 倪永军, 马观领, 刘昂, 顾金柱, 赵科, 赵元鹏. 一种预制装配式组合梁结构. 中国, 国家知识产权局, ZL201921040386.3

[2]   朱力, 倪永军, 罗鑫源, 刘昂, 顾金柱. 冻融循环作用下的疲劳试验装置. 中国, 国家知识产权局, ZL201921040387.8

[1]   赵文忠, 韩冰, 鲁荣利, 朱力, 李新杰, 张鹏飞, 张超, 王雪峰. -混凝土组合梁界面滑移测量传感器. 中国, 国家知识产权局, ZL201822061313.4


软件著作权

[9]  曲线钢-混凝土组合桥梁爬移分析计算程序软件V1.0. 中国, 国家版权局, 2022SR0819003 (已授权).

[8]  曲线钢-混凝土组合桥梁抗倾覆分析计算程序软件V1.0. 中国, 国家版权局, 2022SR0819002 (已授权).

[7]  曲线钢-混凝土组合桥梁基于应力的简化方法计算系统V1.0. 中国, 国家版权局, 2022SR0800693 (已授权).

[6]  曲线钢-混凝土组合桥梁高精度杆系模型计算系统V1.0. 中国, 国家版权局, 2022SR0797493 (已授权).

[5]  曲线梁截面特性计算软件V1.0. 中国, 国家版权局, 2021SR1159560 (已授权).

[4]  曲线组合箱型梁考虑弯扭耦合复杂受力效应的模型分析软件V1.0. 中国, 国家版权局, 2021SR1159503 (已授权).

[3]  曲线组合箱型梁的梁格模型计算分析软件V1.0. 中国, 国家版权局, 2021SR1159159 (已授权).

[2]  桥梁结构模态识别分析系统V1.0. 中国, 国家版权局, 2020SR1067590 (已授权).

[1]  既有桥梁上部结构体系时变可靠性分析系统V1.0. 中国, 国家版权局, 2019SR0540557 (已授权).


获奖与荣誉

科研

[11] 2022年中国交通运输协会科技创新青年奖 (排名: 1/1)

[10]  2022年交通运输部重大科技创新成果 (排名:1/15)

[9]    2021年中国交通运输协会科学技术进步一等奖 (排名: 1/15)

[8]    2021年北京市轨道交通学会杰出青年人才奖 (排名: 1/1)

[7]    2021年中国公路学会科学技术进步二等奖 (排名: 6/10)

[6]    2021年北京市轨道交通学会科学技术进步一等奖 (排名: 3/15)

[5]    2021年北京市轨道交通学会科学技术进步二等奖 (排名: 5/10)

[4]    2019年中国钢结构协会科学技术奖特等奖 (排名: 15/20)

[3]    2018年中国铁道学会学术活动二等优秀论文

[2]    2014年领跑者5000—中国精品科技期刊顶尖学术论文

[1]    2011年中国钢结构协会钢-混凝土组合结构分会第五届精工杯青年优秀论文二等奖


教学

[3]    2020-2021年北京交通大学教学成果二等奖

[2]    2016-2017年北京交通大学教学成果二等奖

[1]    2016-2017年北京交通大学土建院教学基本功比赛二等奖


综合

[5]  2023年北京交通大学智瑾奖优秀青年教师

[4]  2022年北京交通大学“五四奖章”

[3]  2022年北京交通大学青年英才培育计划I类人才

[2]  2021年北京交通大学青年英才培育计划II类人才

[1]  2021年北京交通大学双青培育计划人才


社会兼职

[3]  中国公路学会桥梁和结构工程分会理事

[2]  “High-Speed Railway”期刊青年编委

[1] “ 华东交通大学学报 期刊青年编委