李晶

博士、副教授

基本信息

办公电话: 电子邮件: lijing@bjtu.edu.cn
通讯地址:北京交通大学光波技术研究所302 邮编:100044

教育背景

2002/9~2006/6          解放军国防信息学院    通信工程专业学士        

2006/9~2008/6          中国传媒大学    电磁场与微波技术专业硕士

2008/9~2013/10        北京交通大学    通信与信息系统专业博士

工作经历

2011/5~2012/5      蒙特利尔工学院(École Polytechnique de Montréal) 访问学者

2011/9~2012/6      康考迪亚大学(Concordia University) 访问学者

2013/10~2016/12   北京交通大学通信与信息系统专业    讲师

2017/1至今            北京交通大学通信与信息系统专业    副教授

研究方向

  • 基于光路交换的信息安全的全光网
  • 新型特种光纤、光电器件及光纤传感
  • 通信工程
  • 人工智能

招生专业

  • 信息与通信工程硕士
  • 通信工程(含宽带网络、移动通信等)硕士
  • 人工智能硕士
  • 信息与通信工程博士

招生信息

欢迎报考学硕与专硕,我的研究方向是微波与光学的交叉学科,主要涉及微波信号在光学中的处理和应用,大学阶段需要学习过通信原理相关知识即可,当然扎实的数学功底是必不可少的,现有在读硕士生5人,已毕业5人,每年名额有限,如久未回复速速联系其它导师。

2024年度入学的学生拟开展微波光子雷达探测及成像方面的研究

2023年毕业学生一名,毕业发表SCI论文4篇,获北京市优秀毕业生、校级优秀毕业生、校级优秀毕业论文,已读博深造。

如若志向是就业工作也十万分欢迎,保底毕业一篇小论文

需要掌握的专业技能,至少一种编程工具(Matlab等)


科研项目

  1. 国家自然科学基金:基于谐波拟合对称三角形光脉冲串生成及关键技术研究,主持
  2. 北京市自然科学基金:具有可调谐测量范围及精度的瞬时微波频率测量技术研究,主持
  3. 基本科研业务费:二次外差法毫米波光子发生器中关键问题研究,主持
  4. 人才基金:基于光纤光栅的光载波边带比可调谐性能研究,主持
  5. 人才基金:具有可优化接收灵敏度的模拟光链路相关技术研究,主持

教学工作

本科生课程:复变函数,光纤通信课程设计

研究生课程:光纤测量,微波光子学原理与应用


论文/期刊

读博那会儿发表SCI论文,随便看看,凑个页面

  1. 期 刊->Jing Li, and et al., “Photonic frequency-quadrupling scheme for millimeter-wave generation by employing feed-forward modulation technique,” Optics Express, 18(3), 2503-2508 (2010)
  2. 期 刊->Jing Li, and et al., "Generation of an optical triangular-shaped pulse train with variable symmetry by using an I/Q modulator,"Optics Letters, 45(6), 1411-1414 (2020)
  3. 期 刊->Jing Li, and et al., "Frequency-doubled triangular-shaped waveform generation based on spectrum manipulation,"Optics Letters, 41(2), 199-202 (2016)
  4. 期 刊->Jing Li, and et al., “Photonic generation of triangular waveform signals by using a dual-parallel Mach-Zehnder Modulator,” Optics Letters, 36(19), 3828-3830 (2011)
  5. 期 刊->Jing Li, and et al., “A 60GHz millimeter-wave generator based on frequency quadrupling feed forward modulation technique,” Optics Letters, 35(21), 3619-3621 (2010)
  6. 期 刊->Jing Li, and et al., “Millimeter-wave radio-over-fiber system based on two-step heterodyne technique,” Optics Letters, 34(20), 3136-3138 (2009)
  7. 期 刊->Jing Li, and et al., “Measurement of Instantaneous microwave frequency by optical power monitoring based on polarization interference,"  IEEE/OSA Journal of Lightwave Technology, 38(8), 2285-2291 (2020)
  8. 期 刊->Jing Li, and et al., “Performance analysis of a photonic-assisted periodic triangular-shaped pulses generator,” IEEE/OSA Journal of Lightwave Technology, 30(11), 1617-1624 (2012)
  9. 期 刊->Jing Li, and et al., “Photonic-assisted periodic triangular-shaped pulses generation with tunable repetition rate,” IEEE Photonic Technology Letters, 25(10), 952-954 (2013)
  10. 期 刊->Jing Li, and et al., “An improved RoF system with high sensitivity and reduced power degradation by employing a triangular CFBG,” IEEE Photonic Technology Letters, 22(7), 516-518(2010)
  11. 期 刊->Jing Li, and et al., “Scheme for a high-capacity 60GHz radio-over-fiber transmission system,” IEEE/OSA Journal of Optical Communications and Networking, 1(4), 324-330 (2009)
  12. 期 刊->Jing Li, and et al., “Performance analysis of an optical single sideband modulation approach with tunable optical carrier-to-sideband ratio,” Optics & Laser Technology, 48(6),210-215 (2012)
  13. 期 刊->Jing Li, and et al., “Performance analysis on an instantaneous microwave frequency measurement with tunable range and resolution based on a single laser source,” Optics & Laser Technology, 63(1),54-61 (2012)
  14. 期 刊->Jing Li, and et al., “Simulation analysis of an improved optical triangular-shaped pulse train generator based on quadrupling RF modulation incorporating fiber dispersion-induced power fading,” Optical Fiber Technology, 19(6), 574-578 (2013)
  15. 期 刊->Jing Li, and et al., “60GHz Radio over Fiber technology for wireless access by employing narrow-angle PSK modulation,” Optics Communications, 284(13), 3428-3432 (2011)
  16. 期 刊->Jing Li, and et al., “A bidirectional 60GHz RoF system based on FWM in a semiconductor optical amplifier,” Optics Communications, 283(10), 2238-2242 (2010)
  17. 期 刊->Jing Li, and et al., “Photonic generation of triangular-shaped waveform signal with adjustable symmetrical coefficient,”Journal of Modern Optics, 66(13), 1457-1465 (2019)
  18. 期 刊->Jing Li, and et al., “Experimental demonstration on triangular-shaped pulse train generation based on harmonic fitting,”Acta Physica Sinica, 63(15), 154215 (2014)
  19. 期 刊->Jing Li, and et al., “Optical single sideband modulation with continuously tunable OCSR by employing a dual-parallel Mach-Zehnder modulator,”Acta Physica Sinica, 62(22), 224210 (2013)
  20. 期 刊->Jing Li, and et al., “Theory study on a photonic-assisted radio frequency phase shifter with direct current voltage control,” Chin.Phys.B, 23(10), 104216 (2014)
  21. 期 刊->Jing Li, and et al., "Frequency-doubled triangular shape lightwave generation with a flexible modulation index,"Chinese Optical Letter, accepted for publication, (2017)
  22. 期 刊->Jing Li, and et al., “Optical ultra-wideband pulse generation and distribution using a dual-electrode Mach-Zehnder modulator,” Chinese Optical Letter, 8(2), 138-141 (2010)
  23. 期 刊->Jing Li, and et al., “Simulation study on an improved frequency-doubled triangular-shaped pulse train generator with reduced harmonic distortion,” Chinese Optical Letter, 12(12), 120602 (2014)
  24. 期 刊->Jing Li, and et al., “Quasi-optical single-sideband modulation with continuous carrier-to-sideband ratio tunability,” Chinese Optical Letter, 13(8), 80606 (2015)
  25. 期 刊->Jing Li, and et al., “Simulation analysis of a photonic ultrawideband pulse generator by using a dual-parallel Mach-Zehnder modulator,” Optical Engineering, 50(10), 105007 (2011)
  26. 期 刊->Jing Li, and et al., “Frequency 8-tupling millimeter-wave photonic generation based on two-step heterodyne technique,” J. Infrared Millim. Waves, 34(3), 352-359 (2015)

专利

1. 李晶,宁提纲,等. 基于双电极调制器产生毫米波超宽带脉冲的装置.[P]. 中国,2008, ZL2008 1 0240116.7 

2. 李晶,宁提纲,等. 基于三角形谱光纤光栅直接调制直接检波生成毫米波装置.[P]. 中国,2009,ZL2009 1 0241944.7

获奖与荣誉

1. 北京交通大学优秀博士学位论文

2. 北京交通大学电信学院科研论文二等奖