李晶

博士 、副教授

基本信息

办公电话: 电子邮件: lijing@bjtu.edu.cn
通讯地址:北京交通大学光波技术研究所302 邮编:100044

教育背景

2002/9~2006/6          中国人民解放军国防信息学院    通信工程专业学士        

2006/9~2008/6          中国传媒大学    电磁场与微波技术专业硕士

2008/9~2013/10        北京交通大学    通信与信息系统专业博士

工作经历

2011/5~2012/5      蒙特利尔工学院(École Polytechnique de Montréal) 访问学者

2011/9~2012/6      康考迪亚大学(Concordia University) 访问学者

2013/10~2016/12   北京交通大学通信与信息系统专业    讲师

2017/1至今            北京交通大学通信与信息系统专业    副教授

研究方向

  • 基于光路交换的信息安全的全光网
  • 新型特种光纤、光电器件及光纤传感
  • 通信工程
  • 人工智能

招生专业

  • 信息与通信工程硕士
  • 通信工程(含宽带网络、移动通信等)硕士
  • 人工智能硕士
  • 信息与通信工程博士
  • 通信工程(含宽带网络、移动通信等)博士

招生信息

      欢迎报考学硕与专硕,我的研究方向是微波与光学的交叉学科,主要涉及微波信号在光学中的处理和应用,大学阶段需要学习过通信原理相关知识即可,当然扎实的数学功底是必不可少的,现有在读硕士生4人,博士生1人,已毕业9人,每年名额有限,如久未回复速速联系其它导师。

      2026年度入学的学生拟开展“宽带微波频率快速识别”方面的研究,本年度只有学硕名额

  • 2018年毕业学硕1名:毕业发表SCI论文2篇,获国家奖学金,已就业:中国移动通信集团北京有限公司
  • 2019年毕业专硕1名:已就业:中国航空工业集团公司北京长城计量测试技术研究所
  • 2020年毕业专硕1名:已就业:中信银行股份有限公司
  • 2020年毕业学硕1名:毕业发表EI论文1篇,中文核心论文1篇,已就业:中信银行股份有限公司
  • 2022年毕业专硕1名:毕业发表EI论文1篇,已就业:中国航天科工集团第十研究院第十总体设计部
  • 2022年毕业博士1名:毕业发表SCI论文5篇,发明专利4项,已就业:中国联通研究院
  • 2023年毕业学硕1名:毕业发表SCI论文4篇,EI论文1篇,发明专利1项,北京市优秀毕业生、校级优秀毕业生、校级优秀毕业论文,已读博深造: 南京大学
  • 2024年毕业学硕1名:毕业发表SCI论文2篇,EI论文1篇,北京市优秀毕业生、校级优秀毕业论文、校级优秀毕业生干部,已读博深造:北京交通大学
  • 2024年毕业专硕1名:毕业发表SCI论文1篇,中文核心论文1篇,校级优秀毕业论文,已就业: 北京中科晶上科技股份有限公司
  • 2025年毕业学硕1名:毕业发表SCI论文2篇,EI论文1篇,国家奖学金,已就业:杭州国科微电子有限公司

      可推荐直博、硕博以及出国深造,毕业仍需要完成至少一篇小论文,技术方案和论文写作提供必要协助,需要掌握的专业工具:编程工具(Matlab等)、绘图工具(3dsMax)、文献管理工具(Endnote)、光学仿真软件Optisystem


科研项目

  1. 国家自然科学基金:基于谐波拟合对称三角形光脉冲串生成及关键技术研究
  2. 北京市自然科学基金:具有可调谐测量范围及精度的瞬时微波频率测量技术研究
  3. 基本科研业务费:二次外差法毫米波光子发生器中关键问题研究
  4. 人才基金:基于光纤光栅的光载波边带比可调谐性能研究
  5. 人才基金:具有可优化接收灵敏度的模拟光链路相关技术研究

教学工作

本科生课程:复变函数,光纤通信课程设计,光纤测量

研究生课程:导波光学与光纤传感,光感知人工智能轨道安全


论文/期刊


一作及通信作者论文如下:

1. 赵韦晨, 李晶, 田成, 裴丽, 宁提纲. 基于镜频抑制混频器的可调函数波形生成和共参调谐. 光学学报. 2025;45(3):0307001.

2. 赵麟, 李晶, 燕苗霞, 田成, 裴丽, 宁提纲. 宽带调频雷达波形的光学生成与时频重构. 光学学报. 2025;45(15):1507001.

3. Zhao W, Li J, Yan M, Zhao L, Pei L, Ning T. High-order function waveform generation based on three-channel synthesis via image-reject mixing. Applied Optics. 2025;64(33):10068-76.

4. Yan M, Li J, Qu Q, Zhao W, Pei L, Ning T. High-Precision Triangular Waveform With Tunable Symmetry Photonic Generation Based on Image-Reject Down Conversion. IEEE Journal of Quantum Electronics. 2025;61(4):1-8.

5. Tian C, Li J, Yan M, Zhao W, Jiang Y, Zhao L. High-resolution microwave frequency measurement based on frequency-to-time mapping via optical delay scanning. Applied Optics. 2025;64(19):5484-91.

6. Jiang Y, Li J, Tian C, Zhao W, Pei L, Ning T. Wideband microwave measurement based on single-channel mapping and image-rejection mixing. Applied Optics. 2025;64(8):2048-56.

7. 王雪辉, 李晶, 燕苗霞, 裴丽, 宁提纲, 郑晶晶, et al. 基于偏振复用调制的周期性光学任意波形生成方案. 光通信技术. 2024;48(3):95-101.

8. 田成, 李晶, 赵韦晨, 裴丽, 宁提纲. 基于DP-MZM调制交/直流功率检测的瞬时频率测量. 光学学报. 2024;44(21).

9. Yan M, Li J, Zhao W, Tian C, Wang X, Jiang Y, et al. Photonic generation of high-accuracy triangular waveform with tunable duty cycle based on a dual-wavelength I/Q modulation. Optical Engineering. 2024;63 (4):047103.

10. Wang X, Li J, Yan M, Pei L, Ning T. Periodic asymmetric function waveform generator based on polarization multiplexing modulator. Optical Engineering. 2024;63(2):025104.

11. Jiang Y, Li J, Yan M, Tian C, Pei L, Ning T. Channelized multi-frequency measurement system based on asymmetric double sideband detection. Applied Optics. 2024;63:3334-42.

12. 燕苗霞, 李晶, 裴丽, 宁提纲, 郑晶晶, 王建帅, et al. 基于保偏光纤双折射特性的函数波形发生器. 光学学报. 2023;43(1):0106001.

13. 蒋玉政, 李晶, 朱伟, 裴丽, 宁提纲. 基于锯齿波调制非平坦光频梳的信道化多频测量. 光学学报. 2023;43(22):2206001.

14. Zhu W, Li J, Yan M, Pei L, Ning T, Zheng J, et al. Photonic Multiple Microwave Frequency Measurement System with Single-Branch Detection Based on Polarization Interference. Electronics. 2023;12(2):455.

15. Yan M, Li J, Wang X, Pei L, Ning T, Zheng J, et al. Photonic generation of triangular waveform with tunable symmetry based on channelized frequency synthesis. Applied Optics. 2023;62.

16. Zhu W, Li J, Yan M, Pei L, Ning T, Zheng J, et al. Multiple microwave frequency measurement system based on a sawtooth-wave-modulated non-flat optical frequency comb. Applied Optics. 2022;61(35):10499-506.

17. Zhu W, Li J, Pei L, Ning T, Zheng J, Wang J. Instantaneous microwave frequency measurement with single branch detection based on the birefringence effect. Applied Optics. 2022;61.

18. Zhu W, Li J, Pei L, Ning T, Zheng J, Wang J. A scalable instantaneous frequency measurement system based on single branch AC/DC detection. Optik. 2022;268:169815.

19. Wang C, Ning T, Li J, Pei L, Zheng J, Zhang J. Instantaneous frequency measurement using two parallel I/Q modulators based on optical power monitoring. Chin Phys B. 2022;31(1):10702-010702.

20. 朱伟, 李晶, 裴丽, 宁提纲, 郑晶晶, 王建帅. 基于偏振延时干涉的瞬时频率测量系统的分析与优化. 光学学报. 2021;41(21):2107001.

21. 刘元, 李晶, 贺永娇, 朱伟, 宁提纲, 裴丽. 基于双平行马赫-曾德尔调制器和平衡光电探测器的四倍频可调对称三角形函数波形信号发生器. 光学学报. 2021;41(19):1906005.

22. Wang C-Y, Ning T-G, Li J, Pei L, Zheng J-J, Li Y-J, et al. Triangular-shaped waveform generation with variable symmetry based on dual-polarization modulation. Acta Physica Sinica. 2021;70(22):224211-1--8.

23. Wang C, Ning T, Li J, Pei L, Zheng J, Li Y, et al. Photonic generation of frequency-quadrupled triangular waveform based on a DP-QPSK modulator with tunable modulation index. Optics & Laser Technology. 2021;137:106818.

24. Wang C, Ning T, Li J, Pei L, Zheng J, Ren G, et al. Photonic Generation of Triangular-Shaped Waveform With Tunable Symmetry Factor Based on Two Single-Drive Mach-Zehnder Modulator. IEEE Photonics Journal. 2020;12(6):1-11.

25. Li J, Wang C, Pei L, Ning T, Zheng J, He R, et al. Generation of an optical triangular-shaped pulse train with variable symmetry by using an I/Q modulator. Opt Lett. 2020;45(6):1411-4.

26. Li J, Pei L, Ning T, Zheng J, Li Y, He R. Measurement of Instantaneous Microwave Frequency by Optical Power Monitoring Based on Polarization Interference. IEEE/OSA Journal of Lightwave Technology. 2020;38(8):2285-91.

27. He Y, Li J, Bao Y, Dong S. Performance analysis on a filter-less frequency doubling generator with tunable phase shift based on dualpolarization modulation. Optoelectronics Letters. 2020;16(3):190-4.

28. Li J, Ning T, Pei L, Zheng J. Photonic generation of triangular-shaped waveform signal with adjustable symmetrical coefficient. Journal of Modern Optics. 2019;66:1-9.

29. Li J, Hao Z, Pei L, Ning T, Zheng J. Frequency-doubled triangular shape lightwave generation with a flexible modulation index. Chin Opt Lett. 2017;15(9):090603.

30. Hao Z, Li J, Wang C, Yuan J. Performance study of optical triangular-shaped pulse generation with full duty cycle. Chin Opt Lett. 2017;15:110601.

31. Li J, Sun J, Xu W, Ning T, Pei L, Yuan J, et al. Frequency-doubled triangular-shaped waveform generation based on spectrum manipulation. Opt Lett. 2016;41:199-202.

32. Li J, Ning T, Pei L, Jian W, Zheng J, You H, et al. Study on a radio over fibre link with improved receiver sensitivity based on polarization modulation. Infrared and Laser Engineering. 2016;45(6):0617004.

33. 李晶, 宁提纲, 裴丽, 简伟, 油海东, 陈宏尧, et al. 基于二次外差法的八倍频毫米波光子发生器特性. 红外与毫米波学报. 2015;34(3):352-9.

34. Li J, Ning T, Pei L, Zheng J, Sun J, Li Y, et al. Quasi-optical single-sideband modulation with continuous carrier-to-sideband ratio tunability. Chin Opt Lett. 2015;13(8):080606.

35. 李晶, 宁提纲, 裴丽, 简伟, 郑晶晶, 油海东, et al. 基于谐波拟合产生周期性三角形光脉冲串的实验研究. 物理学报. 2014;63(15):154215.

36. Li J, Ning T, Pei L, Zheng J, Li Y, Yuan J, et al. Simulation study on an improved frequency-doubled triangular- shaped pulse train generator with reduced harmonic distortion. Chin Opt Lett. 2014;12:120602-7.

37. Li J, Ning T, Pei L, Jian W, Zheng J, You H, et al. Performance analysis on an instantaneous microwave frequency measurement with tunable range and resolution based on a single laser source. Optics & Laser Technology. 2014;63:54-61.

38. Li J, Ning T, Pei L, Jian W, You H, Wen X, et al. Theory study on a photonic-assisted radio frequency phase shifter with direct current voltage control. Chinese Physics B. 2014;23:104216.

39. 李晶, 宁提纲, 裴丽, 简伟, 油海东, 陈宏尧, et al. 基于双平行马赫曾德调制器的动态可调光载波边带比光单边带调制:理论分析与实验研究. 物理学报. 2013;62(22):224210.

40. Li J, Ning T, Pei L, Jian W, You H, Chen H, et al. Photonic-Assisted Periodic Triangular-Shaped Pulses Generation With Tunable Repetition Rate. IEEE Photonics Technology Letters. 2013;25:952-4.

41. Li J, Ning T, Pei L, Jian W, You H, Chen H, et al. Simulation analysis of an improved optical triangular-shaped pulse train generator based on quadrupling RF modulation incorporating fiber dispersion-induced power fading. Optical Fiber Technology. 2013;19(6, Part A):574-8.

42. Li J, Ning T, Pei L, Gao S, You H, Chen H, et al. Performance analysis of an optical single sideband modulation approach with tunable optical carrier-to-sideband ratio. Optics & Laser Technology. 2013;48:210-5.

43. Li J, Zhang X, Hraimel B, Ning T, Pei L, Wu K. Performance Analysis of a Photonic-Assisted Periodic Triangular-Shaped Pulses Generator. IEEE/OSA Journal of Lightwave Technology. 2012;30(11):1617-24.

44. Li J, Ning T, Pei L, Peng W, Jia N, Zhou Q, et al. Photonic generation of triangular waveform signals by using a dual-parallel Mach–Zehnder modulator. Opt Lett. 2011;36(19):3828-30.

45. Li J, Ning T, Li P, Qi C, Gao S, Zhou Q, et al. Simulation analysis of a photonic ultrawideband pulse generator by using a dual-parallel Mach-Zehnder modulator. Optical Engineering. 2011;50(10):105007.

46. Li J, Ning T, Pei L, Qi C, Zhou Q, Hu X, et al. 60 GHz millimeter-wave generator based on a frequency-quadrupling feed-forward modulation technique. Opt Lett. 2010;35(21):3619-21.

47. Li J, Ning T, Pei L, Qi C, Hu X, Zhou Q. An Improved Radio Over Fiber System With High Sensitivity and Reduced Power Degradation by Employing a Triangular CFBG. IEEE Photonics Technology Letters. 2010;22(7):516-8.

48. Li J, Ning T, Pei L, Qi C, Hu X, Zhou Q. Photonic frequency-quadrupling scheme for millimeter-wave generation by employing feed-forward modulation technique. Opt Express. 2010;18(3):2503-8.

49. Li J, Ning T, Pei L, Qi C. Optical ultra-wideband pulse generation and distribution using a dual-electrode Mach-Zehnder modulator. Chin Opt Lett. 2010;8:138-41.

50. Li J, Ning T, Pei L, Qi C. A bidirectional 60GHz RoF system based on FWM in a semiconductor optical amplifier. Optics Communications. 2010;283(10):2238-42.

51. Li J, Ning T, Pei L, Qi C. Scheme for a High-Capacity 60 GHz Radio-Over-Fiber Transmission System. J Opt Commun Netw. 2009;1(4):324-30.

52. Li J, Ning T, Pei L, Qi C. Millimeter-wave radio-over-fiber system based on two-step heterodyne technique. Opt Lett. 2009;34(20):3136-8.


专利

1. 李晶,宁提纲,等. 基于双电极调制器产生毫米波超宽带脉冲的装置.[P]. 中国,2008, ZL2008 1 0240116.7 

2. 李晶,宁提纲,等. 基于三角形谱光纤光栅直接调制直接检波生成毫米波装置.[P]. 中国,2009,ZL2009 1 0241944.7

获奖与荣誉

1. 北京交通大学优秀博士学位论文

2. 北京交通大学电信学院科研论文二等奖

3. 中国通信学会科学技术奖二等奖, 2024年