张彩萍

博士、教授、国家优青、北京市科技新星

基本信息

办公电话:010-51683907 电子邮件: zhangcaiping@bjtu.edu.cn
通讯地址:北京市海淀区上园村3号电气楼 邮编:100044

教育背景


  • 2010年获北京理工大学工学博士学位,2008年到英国南安普顿大学欧洲液流电池中心联合培养1年。          

工作经历



  • 2017/12 -  ,             北京交通大学,电气工程学院,教授(破格)

  • 2013/12 - 2017/11,北京交通大学,电气工程学院,副教授

  • 2012/07-2013/11, 北京交通大学,电气工程学院,讲师

  • 2010/09-2013/06,北京交通大学,电气工程学院,博士后




研究方向

  • 电工理论与新技术
  • 电气工程
  • 电力电子与电力传动
  • 轨道交通供能与电力牵引
  • 道路交通新能源技术
  • 智慧能源应用技术
  • 清洁能源技术和储能技术
  • 智能电网与新型电气装备

招生专业

  • 电气工程硕士
  • 电气工程博士
  • 轨道交通运输博士
  • 道路交通运输博士

科研项目

  • 自然科学横向项目: 储能系统电池故障诊断预警及故障隔离技术研究, 2023-2024
  • 国家重点研发计划-课题: 复杂工况无钴电池全生命周期性能评估技术, 2022-2026
  • 国家自然科学基金"优秀青年基金: 新能源车辆动力电池长寿命应用基础, 2023-2025
  • 自然科学横向项目: 储能电池性能及安全测评方法及全数字仿真技术, 2021-2023
  • 自然科学横向项目: 电池寿命特征提取及健康管理项目委托开发合同, 2021-2022
  • 北京市自然基金“面上”: 锂离子电池性能衰减突变机制及预测方法研究, 2021-2023
  • 自然科学横向项目: 动力电池梯次利用技术研究及示范应用, 2020-2023
  • 前沿中心项目: 高铁电力牵引系统服役性能与状态维修, 2020-2023
  • 自然科学横向项目: 动力电池全生命周期SOX估算, 2019-2021
  • 国家重点研发计划: 高精度、高可靠电池管理系统关键技术研究, 2018-2021
  • 北京市科委: 北京市科技新星计划, 2018-2020
  • 国家重点研发计划: 交、直流充电过程动力电池的安全监测、预警及智能控制技术研究, 2016-2019
  • 国家自然科学基金“重点”: 车载锂离子动力电池安全管理与高效利用的基础理论与关键技术, 2017-2021
  • 国家自然科学基金“其他”: 新能源汽车车用动力电池产业政策选择研究, 2010-2011

教学工作

本科生课程《自动控制理论》

本科生课程《Battery and Energy Storage》

论文/期刊

[1] Yang Liu, Caiping Zhang* , Jiuchun Jiang, Linjing Zhang, Weige Zhang, Li Lao, Shichun Yang; A 3D distributed circuit-electrochemical model for the inner inhomogeneity of lithium-ion battery; Applied Energy, 2023, 331(4): 120390.

[2] Jinyu Wang, Caiping Zhang*, Linjing Zhang, Xiaojia Su, Weige Zhang, Xu Li, Jingcai Du; A novel aging characteristics-based feature engineering for battery state of health estimation, Energy, 2023,273: 127169.

[3] Siia Yang, Caiping Zhang*, Jiuchun Jiang, Weige Zhang, Haoze Chen, Yan Jiang, Dirk Uwe Sauer, Weihan Li; Fast screening of lithium-ion batteries for second use with pack-level testing and machine learning, eTransportation, 2023, 17: 100255. 

[4] Xinyu Jia, Caiping Zhang*, Yang Li, Changfu Zou, Le Yi Wang, Xue Cai; Knee-Point-Conscious Battery Aging Trajectory Prediction Based on Physics-Guided Machine Learning; IEEE Transactions on Transportation Electrification, 2023.04.11, 1-1.

[5] Yubin Wang, Caiping Zhang*, Jing Hu, Pengfei Zhang, Linjing Zhang, Zhengxun Xu. Research on internal short circuit detection method for lithium-ion batteries based on battery expansion characteristics; Journal of Power Sources, 2023, 587.

[6] Jing Hu, Caiping Zhang*, Yubin Wang, Pengfei Zhang, Linjing Zhang, Jinyu Wang, Hao Li.  Multisource information fusion based parameterization study of lithium-on battery electrolyte leakage; Journal of Energy Storage, 2023.

[7] Yang Liu, Caiping Zhang*, Jiuchun Jiang, Linjing Zhang, Weige Zhang, Le Yi Wang; Deduction of the transformation regulation on voltage curve for lithium-ion batteries and its application in parameters estimation; eTransportation, 2022, 12: 100164.

[8] Sijia Yang, Caiping Zhang*, Jiuchun Jiang, Weige Zhang, Linjing Zhang, Yubin Wang;Review on state-of-health of lithium-ion batteries: Characterizations, estimations and applications; Journal of Cleaner Production; 2021,314: 128015. 

[9] Xinyu Jia, Caiping Zhang, Le Yi Wang, Linjing Zhang, Xingzhen Zhou; Early Diagnosis of Accelerated Aging for Lithium-Ion Batteries With an Integrated Framework of Aging Mechanisms and Data-Driven Methods, IEEE Transactions on Transportation Electrification, 2022, 8(4): 4722-4742. 

[10] Yang SJ*, Zhang CP*, Jiang JC, Zhang WG, Gao Y, Zhang LJ. A voltage reconstruction model based on partial charging curve for state-of-health estimation of lithium-ion batteries[J]. Journal of Energy Storage. 35 (2021) 102271. https://doi.org/10.1016/j.est.2021.102271

[11] 姜久春, 高洋, 张彩萍*, 等. 电动汽车锂离子动力电池健康状态在线诊断方法[J]. 机械工程学报, 2020, 55(20): 60-72, 84.

[12] Cong XY, Zhang CP*, Jiang JC*, et al. A Hybrid Method for the Prediction of the Remaining Useful Life of Lithium-Ion Batteries with Accelerated Capacity Degradation[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 12775-12785. 

[13] Jia XY, Zhang CP*, Zhang LJ, et al. The Degradation Characteristics and Mechanism of Li [Ni0.5Co0.2Mn0.3] O2 Batteries at Different Temperatures and Discharge Current Rates[J]. Journal of the Electrochemical Society, 2020, 167(2): 020503. 

[14] Jiang Y, Jiang JC, Zhang CP*, Zhang WG, Gao Y, Mi C*. A Copula-based battery pack consistency modeling method and its application on the energy utilization efficiency estimation[J]. Energy, 2019, 189: 116219. 

[15] Zhang CPWang YB*, Gao Y, Wang F*, et al. Accelerated fading recognition for lithium-ion batteries with Nickel-Cobalt-Manganese cathode using quantile regression method[J]. Applied Energy, 2019, 256: 113841. 

[16] Liu Y, Zhang CP*, Jiang JC, et al. Capacity estimation of serial lithium-ion battery pack using dynamic time warping algorithm[J]. IEEE Access, 2019, 7: 174687-174698. IF:3.745

[17] Gao Y, Yang SJ, Zhang CP*, Jiang JC, et al. The mechanism and characterization of accelerated capacity deterioration for lithium-ion battery with Li (NiMnCo) O2 cathode[J]. Journal of the Electrochemical Society, 2019, 166(8): A1623.

[18] Jiang Y, Jiang JC, Zhang CP*, Zhang WG, Gao Y, Mi C*, et al. State of health estimation of second-life LiFePO4 batteries for energy storage applications[J]. Journal of Cleaner Production, 2018, 205: 754-762. 

[19] Gao Y, Jiang JC, Zhang CP* et al. Lithium-ion battery aging mechanisms and life model under different charging stresses[J]. Journal of Power Sources, 2017, 356: 103-114. 

[20] Zhang CP*, Jiang JC, Gao Y, Zhang WG, Liu QJ, Hu XS*. Charging optimization in lithium-ion batteries based on temperature rise and charge time[J]. Applied energy, 2017, 194: 569-577. 

[21] Zhang CP*, Wang LY, Li X, Chen W, et al. Robust and adaptive estimation of state of charge for lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics[J], 2015, 62(8): 4948-4957. 

[22] 张彩萍*, 姜久春, 张维戈, 等. 梯次利用锂离子电池电化学阻抗模型及特性参数分析[J]. 电力系统自动化, 2013, 37(1): 54-58.







专著/译著

Jiang JC, Zhang CP. Fundamentals and applications of lithium-ion batteries in electric drive vehicles[M]. John Wiley & Sons, 2015.

专利

软件著作权

获奖与荣誉


  • 2022年获中国汽车工业技术发明特等奖(4/6)
  • 2022年获北京交通大学优秀教师
  • 2018年获中国汽车工程学会科技进步一等奖(4/10)
  • 2018年获北京交通大学智瑾奖奖教金优秀青年教师奖
  • 2017年获上海市科技进步二等奖
  • 2015年获教育部技术发明一等奖(3/6)
  • 2017年获电气工程学院优秀本科班主任



社会兼职

SCI期刊《eTransportation》青年编委

中国科技期刊卓越计划高起点新刊《Green Energy and Intelligent Transportation》青年编委

《电源学报》编委

北京汽车工程学会理事