李政勇
博士、教授
博士、教授
办公电话: | 电子邮件: |
通讯地址: | 邮编: |
北京交通大学博士,2007年新加坡南洋理工大学交流访问,2011年英国剑桥大学卡文迪许实验室访问学者。
国家自然科学基金“面上”: 全光比例-积分-微分控制系统与超快光脉冲相干自锁定, 主持
国家自然科学基金重大研究计划培育项目: 基于多粒子自旋压缩与量子纠缠的量子度量, 参加
国家自然科学基金“面上”: 超快高相干性可调光脉冲系统与量子调控应用, 主持
教育部“专项任务”: 全国优秀博士学位论文作者专项资助, 主持教育部“人才专项”: 新世纪优秀人才计划, 主持
博士点基金: 半导体光放大器的超快偏振效应及其在高速全光信号处理中的应用, 主持
国家自然科学基金“青年基金”: 40Gb/s差分偏振编码光纤通信技术基础研究, 主持
1、研究生课程《量子信息与通信》
2、本科生课程《量子通信原理与应用》
Selected Papers
[29] Direct measurement of the PDC photon statistics by PNR detector, Optics Communications, 477, 126352 (2020).
[28] Polarization scrambling characteristic analysis based on density of polarization states statistics, Chin. Opt. Lett., 18(6), 060604 (2020).
[27] Uniformly high-speed semi-open loop polarization control and PMD suppression, Chin. Opt. Lett., 18(5), 050601 (2020). Selected as Research Highlight.
[26] Phenomenological model for mixed multiphoton absorption in bialkali photocathode and application to ultrafast pulse characterization, Applied Physics Letters, 114(23), 231102 (2019).
[25] High-order actively mode-locked picosecond fiber laser and Poissonian single-photon source, Optics Communications, 453, 124394 (2019).
[24] Nonlinear absorption in single-photon detector and ultrafast mode-locked laser pulse characterization, Optical Fiber Communications Conference (OFC2018), Mar. 11-15, 2018, San Diego, USA.
[23] Ultralow-noise single-photon detection based on precise temperature controlled photomultiplier with enhanced electromagnetic shielding, Chin. Opt. Lett., 15(10), 100301 (2017).
[22] Non-linear polarization orthogonality loss in a semiconductor optical amplifier, Chin. Opt. Lett., 14(9), 090601 (2016).
[21] Fast-gated single-photon counting with ultra-low noise based on thermoelectrically cooled photomultiplier tube, 13th Intl. Conference on Quantum Communication, Measurement and Computing (QCMC2016), Jul. 3-8, 2016, Singapore.
[20] Coincidence counting measurement of commercial quasi-single-photon source, Chin. Opt. Lett., 13, 20301 (2015).
[19] Truly random number generation based on one single-photon detector optimized by polarization scrambling, 12th Intl. Conference on Quantum Communication, Measurement and Computing (QCMC2014), Nov.2-6, 2014, Hefei, China.
[18] Phase-locked all-optical differential polarization demodulation, Chin. Phys. B 23(6), 064214 (2014).
[17] Snapping single flying photons based on tunneling assisted multiphoton absorption, APS March Meeting, Mar. 3-7, 2014, Denver, USA.
[16] Experimental two-photon absorption in silicon avalanche photodiode for infrared single photon detection, APS March Meeting, Mar. 3-7, 2014, Denver, USA.
[15] Phase-locked flying qubits with synthesized waveforms, Nature Communications, 4(3), 1600 (2013).
[14] Principal state analysis for compact in-line fiber polarization controller, Chin. Phys. Lett., 30(1), 014205 (2013).
[13] Polarization temporal differentiation with application to pulse multiplication and reshaping, Journal of the Optical Society of America (JOSA) B, 28(10), 2347 (2011).
[12] Optical time-domain differentiation based on intensive differential group delay, Chin. Phys. B, 20(10), 110528 (2011).
[11] Polarization temporal signal processor for ultrahigh-speed optical communication applications, Optical Fiber Communications Conference (OFC2011), Mar. 6-10, 2011, Los Angeles, USA.
[10] Mueller-matrix-based differential rotation method for precise measurement of fiber birefringence vector, Chin. Phys. Lett., 27(10), 104201 (2010).
[9] All-optical differentiator and applications to ultra-high-speed optical communication, (Invited Paper), International Conference on Optical Communications and Networks (ICOCN2010), Oct. 24-27, 2010, Nanjing, China.
[8] All-optical differentiator and high-speed pulse generation based on cross-polarization modulation in a semiconductor optical amplifier, Optics Letters, 34(6), 830 (2009).
[7] Temporal differentiation of optical signals based on polarization coupling and filtering, Conference on Lasers and Electro-Optics (CLEO2009), May 31-Jun. 4, 2009, Baltimore, USA.
[6] Polarization shift keying based on cross polarization modulation of semiconductor optical amplifier (Invited Paper), International Conference on Optical Communications and Networks (ICOCN2009), Sept. 15-17, 2009, Beijing, China.
[5] Generalized principal state of polarization and matrix model for piezoelectric polarization controllers, Chin. Phys. Lett., 25(4), 1325 (2008).
[4] Matrix-based polarization analysis and application of semiconductor optical amplifiers, Chin. Phys. Lett., 25(11), 3964 (2008).
[3] Stress distribution and induced birefringence analysis for pressure vector sensing based on single mode fibers, Optics Express, 16(6), 3955 (2008).
[2] Phenomenological model for semiconductor optical amplifiers and application to time-domain digital polarization encoding, Optics Letters, 33(18), 2032 (2008).
[1] Cascaded dynamic eigenstates of polarization analysis for piezoelectric polarization control, Optics Letters, 32(19), 2900 (2007).
教育部新世纪优秀人才
全国优秀博士学位论文奖