王目光

博士、教授

基本信息

办公电话:010-51688036 电子邮件: mgwang@bjtu.edu.cn
通讯地址:北京交通大学光波技术研究所 邮编:100044

教育背景

王目光,男,博士,教授,博士生导师,IEEE Senior Member,中国通信学会、光学学会高级会员。1999年毕业于山东大学光电子信息工程系专业,获学士学位;2004年毕业于北京交通大学通信与信息系统专业,获工学博士学位。2004年至今在北京交通大学光波技术研究所工作,2012-2013年国家公派以访问学者身份留学加拿大渥太华大学。2008年入选北京市科技新星计划,2009年入选教育部新世纪优秀人才支持计划,2014年北京市高校青年英才计划,2021年青年英才计划。


http://faculty.bjtu.edu.cn/7760/

工作经历

研究方向

  • 基于光路交换的信息安全的全光网
  • 新型特种光纤、光电器件及光纤传感
  • 电磁场与微波技术
  • 通信工程
  • 人工智能

招生专业

  • 信息与通信工程硕士
  • 电子科学与技术硕士
  • 通信工程(含宽带网络、移动通信等)硕士
  • 信息与通信工程博士
  • 通信工程(含宽带网络、移动通信等)博士
  • 人工智能硕士

科研项目

主要研究方向包括高速光纤通信系统关键技术和器件、新型光纤传感、全光信号处理、微波光子、光纤通信与无线通信融合技术和面向5G/6G的光载无线技术,欢迎好学、勤奋、踏实、乐观、主动性强、对科研有浓厚兴趣的同学报考。

主持和参加的科研项目主要有:


1. 国家自然科学基金项目“宽带雷达通信一体化技术”
2. 国家自然基金重点项目“微波光子光纤磁场传感研究”

3. JW科技委创新特区项目“******技术”
4. 国家自然科学基金项目“基于光电振荡的多参量光纤传感技术” 

5. 国家自然科学基金项目“光电振荡器关键技术及应用研究” 
6. 中央高校专项资金项目“微波光子雷达技术”
7. 中央高校专项资金项目“基于OEO和CRoF技术的5G前传网络设计”
8. 北京市教委:北京高等学校“青年英才计划”
9. 教育部新世纪优秀人才支持计划
10. 国家自然科学基金:超高采样偏振不敏感宽带全光模数转换技术的研究 
11. 北京市科委:北京市科技新星计划
12. 中央高校专项资金项目“端到端有连接、有信令系统的光路交换网络研究”
13. 科技部973计划课题:面向光路交换网络的光纤器件理论与关键技术研究
14. 科技部“863”:160Gbit/s-泵多纤光传输技术的研究
15. 国家自然科学基金“超宽带双芯光子晶体光纤及相关器件研究”
16. 国家自然科学基金“基于时间透镜的光学傅立叶变换在实时测量中的应用” 
17. 中央高校专项资金项目“基于双波长激光器的微波光子混频器的研究”





教学工作

已主讲本科生课程:《全光通信网》、《光通信技术基础》、《光纤通信概论》、《光纤通信研究性专题》;研究生课程:《光通信网络》。

论文/期刊

Selected Publications

[71]. M Wang*, Y Tang, J Sun, J Zhang, Q Ding, B Wu, F Yan, Photonic-assisted FSK signal generation based on carrier phase-shifted double sideband modulation. Chinese Optics Letters 19 (10), 103901, 2021

[70]. M Li, M Wang*, M Han, et al. Multiband radio-over-fiber system for a 5G mobile fronthaul network. Applied Optics 60 (27), 8579-8587, 2021

[69]. M. Han, M. Wang*, B. Wu, et al. Linearity improvement of analog photonic link based on a phase-coherent orthogonal light wave generator. Optics Letters, 46(15), 3753-3756, 2021.

[68]. Q. Ding, M. Wang*, J Zhang, et al. Parity-time symmetry in parameter space of polarization. APL Photonics, 6(7), 076102, 2021.

[67]. J. Zhang, M. Wang*, Y Tang, et al. "Angular Velocity Measurement With Improved Scale Factor Based on a Wideband-Tunable Optoelectronic Oscillator," in IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-9, 2021, Art no. 7003409, doi: 10.1109/TIM.2021.3067183.

[66]. Q. Ding, M. Wang*, J Zhang, et al. A Precisely Frequency-Tunable Parity-Time-Symmetric Optoelectronic Oscillator[J]. Journal of Lightwave Technology, 38(23): 6569-6577, 2020.10.1109/JLT.2020.3014265.

[65]. Yu Tang, Muguang Wang*, Jing Zhang, Naihan Zhang, Yan Li, Qi Ding, Beilei Wu, Yan Liu, Guofang Fan. Curvature and temperature sensing based on a dual-frequency OEO using cascaded TCFBG-FP and SMFBG-FP cavities. Optics & Laser Technology131, 106442, 2020. https://doi.org/10.1016/j.optlastec.2020.106442

[64]. Wang, M., Zhang, N., Huang, X., Yin, B., Mu, H., Han, M., & Chen, D. (2020). High sensitivity demodulation of a reflective interferometer-based optical current sensor using an optoelectronic oscillator. Optics Letters45(16), 4519-4522, 2020. https://doi.org/10.1364/OL.401279

[63]. Jianfang Yang, Chuncan Wang, Caiping Jia, Muguang Wang. Numerical Simulation of Three-Core Photonic Crystal Fiber With Large Group-Velocity Dispersion. IEEE Access8, 65274-65282, 2020.

[62]. Q Qin, Y Liu, Z Tan, M Wang, F Yan. Measurement matrix construction by specklegrams from step index multimode fiber and its application in compressive sensing. Optik, 164783, 2020.

[61]. Y Jing, G Fan, R Wang, Z Zhang, M Wang, X Cai, J Wei, X Chen, H Li, Y Li, "Analysis for an Improved Nanomechanical Microcantilever Sensor on Optical Waveguides," in IEEE Access, vol. 8, pp. 63856-63861, 2020, doi: 10.1109/ACCESS.2020.2984058.

[60]. G Mu, Y Liu, Q Qin, Z Tan, G Li, M Wang, F Yan, "Refractive Index Sensing Based on the Analysis of D-Shaped Multimode Fiber Specklegrams," in IEEE Photonics Technology Letters, vol. 32, no. 8, pp. 485-488, 15 April15, 2020, doi: 10.1109/LPT.2020.2980574.

[59]. Liu, Y., Li, G., Qin, Q., Tan, Z., Wang, M., & Yan, F. (2020). Bending recognition based on the analysis of fiber specklegrams using deep learning. Optics & Laser Technology131, 106424, 2020. https://doi.org/10.1016/j.optlastec.2020.106424

[58]. Y Liu, Y Hu, Y Li, Q Qin, G Li, ZW Tan, M Wang, FP Yan, "Image Compression-Encryption Scheme via Fiber Specklegram-Based Compressive Sensing and Double Random Phase Encoding," in IEEE Photonics Journal, vol. 12, no. 4, pp. 1-11, Aug. 2020, Art no. 7102311, doi: 10.1109/JPHOT.2020.3005975.

[57]. N Zhang, M. Wang*, B Wu, M Han, Temperature-insensitive relative humidity sensing based on a carrier-suppression-effect-free tunable optoelectronic oscillator using a non-coherent broadband optical source, Sensors and Actuators A: Physical, 2020, Vol. 307, 1 June 2020, 111988. https://doi.org/10.1016/j.sna.2020.111988

[56]. Zhang, N., Wang, M.*, Wu, B., Han, M., Yin, B., Cao, J., & Wang, C.. Temperature-Insensitive Magnetic Field Sensor Based on an Optoelectronic Oscillator Merging a Mach–Zehnder Interferometer. IEEE Sensors Journal20(13), 7053-7059, 2020. https://doi.org/10.1109/JSEN.2020.2973515

[55]. B Yin, G Sang, R Yan, Y Wu, S Wu, M Wang, W Liu, H Li, Q Wang, Wavelength-and Intensity-Demodulated Dual-Wavelength Fiber Laser Sensor for Simultaneous RH and Temperature Detection. IEEE Access8, 52091-52099, 2020.  https://doi.org/10.1109/ACCESS.2020.2979470

[54]. Y Tang, M. Wang*, B Wu, Y Dong, H Xiao, J Zhang, H Mu, G Fan, High-sensitivity displacement sensing based on an OEO incorporating an unbalanced MZI, Optics & Laser Technology 121, 105816, 2020.

[53]. M Han, M. Wang*, N Zhang, H Mu, B Wu, Y Liu, F Yan, A bandwidth-enhanced polarization division multiplexed intensity modulation-direct detection system utilizing a dual polarization-DPMZM, Optical Fiber Technology 53, 102042, 2019

[52]. Jing Zhang, Muguang Wang*, Yu Tang, Qi Ding, and Naihan Zhang, "Scale factor improvement for angular velocity measurement based on an optoelectronic oscillator," Opt. Lett. 44, 5194-5197 (2019)

[51]. Y. Guo, M. Wang*, Y. Li, H. Mu, B. Wu, Y. Liu, F. Yan. "Joint Modulation Format Identification and Frequency Offset Estimation Based on Superimposed LFM Signal and FrFT." Ieee Photonics Journal 11(5): 1-12, 2019

[50]. Ding, Q., Wang, M.*, Wu, B., Zhang, J., Mu, H., Liu, Y., & Yan, F. (2019). Tunable optoelectronic oscillator based on a polarization-dependent phase modulator cascaded with a linear chirped FBG. Optics & Laser Technology, 119, 105643, 2019.

[49]. Mu, H., Wang, M., & Li, M. (2019). Power-efficient FCC-compliant UWB generator using polarization-maintaining FBG-based spectral shaper and incoherent wavelength-to-time mapping. Optical Fiber Technology, 50, 271-276, 2019.

[48]. Liu, J., Lu, P., Mihailov, S. J., Wang, M., & Yao, J. (2019). Real-time random grating sensor array for quasi-distributed sensing based on wavelength-to-time mapping and time-division multiplexing. Optics letters, 44(2), 379-382, 2019.

[47]. Sun, J., Wang, M.*, Tang, Y., Wu, B., Zhang, J., Li, T., & Shi, Y. (2019). Width-tunable optical pulse generator based on the polarization-sensitive feature of LiNbO 3 crystal in Mach–Zehnder modulator. Optical Engineering, 58(6), 063104, 2019.

[46]. Sun, C., Wang, M.*, Dong, Y., Ye, S., & Jian, S. (2019). Simultaneous measurement of magnetic field and temperature based on NCF cascaded with ECSF in fiber loop mirror. Optical Fiber Technology, 48, 45-49, 2019.

[45]. Jian, S., Tang-Jun, L., Mu-Guang, W.*, Nan, J., Yan-Chao, S., Chun-Can, W., & Su-Chun, F. (2019). Evolution of non-frequency shift components of pulse tail in normal dispersion region of highly nonlinear fiber. ACTA PHYSICA SINICA, 68(11), 2019.

[44]. Yin, B., Wu, S., Wang, M., Liu, W., Li, H., Wu, B., & Wang, Q. (2019). High-sensitivity refractive index and temperature sensor based on cascaded dual-wavelength fiber laser and SNHNS interferometer. Optics express, 27(1), 252-264, 2019.

[43]. Tang, Y., Wang, M.*, Wu, B., Zhang, J., Ding, Q., Mu, H., ... & Yan, F. (2018). Chromatic dispersion measurement based on a high-Q optoelectronic oscillator incorporating cascaded FIR and IIR filters. OSA Continuum1(4), 1205-1214, 2018

[42]. J. Zhang, M. Wang*, Y. Tang, Q. Ding, B. Wu, Y. Yang, et al., "High-sensitivity measurement of angular velocity based on an optoelectronic oscillator with an intra-loop Sagnac interferometer," Optics letters, vol. 43, pp. 2799-2802, 2018.

[41]. Y. Yang, M. Wang*, Y. Shen, Y. Tang, J. Zhang, Y. Wu, et al., "Refractive Index and Temperature Sensing Based on an Optoelectronic Oscillator Incorporating a Fabry–Perot Fiber Bragg Grating," IEEE Photonics Journal, vol. 10, pp. 1-9, 2018.

[40]. C. Sun, Y. Dong, M. Wang*, and S. Jian, "Liquid level and temperature sensing by using dual-wavelength fiber laser based on multimode interferometer and FBG in parallel," Optical Fiber Technology, vol. 41, pp. 212-216, 2018.

[39]. H. Mu, M. Wang, B. Wu, Y. Tang, J. Zhang, and Q. Ding, "Background-free microwave pulse generator based on both bright and dark temporal gate and a single photodetector," Optics Communications, vol. 425, pp. 146-151, 2018.

[38]. H. Mu, M. Wang, Y. Tang, J. Zhang, and S. Jian, "Photonic generation of FCC-compliant UWB pulses based on modified Gaussian quadruplet and incoherent wavelength-to-time conversion," Optics Communications, vol. 411, pp. 170-174, 2018.

[37]. Y. Dong, B. Wu, M. Wang, H. Xiao, S. Xiao, C. Sun, et al., "Magnetic field and temperature sensor based on D-shaped fiber modal interferometer and magnetic fluid," Optics & Laser Technology, vol. 107, pp. 169-173, 2018.

[36]. B. Yin, M. Wang, S. Wu, Y. Tang, S. Feng, and H. Zhang, "High sensitivity axial strain and temperature sensor based on dual-frequency optoelectronic oscillator using PMFBG Fabry-Perot filter," Optics Express, vol. 25, pp. 14106-14113, 2017.

[35]. B. Yin, M. Wang, S. Wu, Y. Tang, S. Feng, Y. Wu, et al., "Fiber ring laser based on MMF-PMFBG-MMF filter for three parameters sensing," Optics express, vol. 25, pp. 30946-30955, 2017.

[34]. B. Wu, M. Wang*, Y. Tang, J. Sun, J. Zhang, F. Yan, et al., "Optical single sideband modulation with tunable optical carrier-to-sideband ratio using a modulator in a Sagnac loop," Optics & Laser Technology, vol. 91, pp. 98-102, 2017.

[33]. Y. Tang, M. Wang*, J. Sun, B. Wu, J. Zhang, Q. Ding, et al., "Optical signal processing based on an optoelectronic oscillator employing a polarization-dependent phase modulator," in Microwave Photonics (MWP), 2017 International Topical Meeting on, 2017, pp. 1-4.

[32]. Y. Tang, M. Wang*, J. Sun, B. Wu, J. Zhang, Q. Ding, et al., "Multifold clock recovery and demultiplexing based on a polarization-dependent phase modulator incorporated frequency-doubling optoelectronic oscillator," Optics Communications, vol. 403, pp. 304-311, 2017.

[31]. J. Sun, N. Jia, T. Li, and M. Wang, "Simultaneous wavelength exchange and 2R regeneration for two optical time division multiplexing signals by a single highly nonlinear fiber," Optical Engineering, vol. 56, p. 116106, 2017.

[30]. C. Sun, M. Wang*, and S. Jian, "Experimental and theoretical study of the in-fiber twist sensor based on quasi-fan Solc structure filter," Optics express, vol. 25, pp. 19955-19965, 2017.

[29]. J. Liu, M. Wang*, Y. Tang, Y. Yang, Y. Wu, W. Jin, et al., "Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing," IEEE Photonics Technology Letters, vol. 29, pp. 2008-2011, 2017.

[28]. J. Liu, M. Wang*, X. Liang, Y. Dong, H. Xiao, and S. Jian, "Erbium-doped fiber ring laser based on few-mode-singlemode-few-mode fiber structure for refractive index measurement," Optics & Laser Technology, vol. 93, pp. 74-78, 2017.

[27]. B. Wu, M. Wang*, Y. Tang, J. Sun, and S. Jian, "Photonic Microwave Signal Mixing Using Sagnac-Loop-Based Modulator and Polarization-Dependent Modulation," IEEE Photonics Journal, vol. 8, pp. 1-8, 2016.

[26]. B. Wu, M. Wang*, J. Sun, B. Yin, H. Chen, T. Li, et al., "Frequency-and phase-tunable optoelectronic oscillator based on a DPMZM and SBS effect," Optics Communications, vol. 363, pp. 123-127, 2016.

[25]. C. Sun, M. Wang*, J. Liu, S. Ye, L. Liang, and S. Jian, "Fiber ring cavity laser based on modal interference for curvature sensing," IEEE Photonics Technol. Lett, vol. 28, pp. 923-926, 2016.

[24]. H. Mu, M. Wang, J. Ye, and S. Jian, "Photonic generation of bipolar direct-sequence UWB signals based on optical spectral shaping and incoherent frequency-to-time conversion," Optics Communications, vol. 369, pp. 120-125, 2016.

[23]. B. Wu, M. Zhu, M. Xu, J. Wang, M. Wang, F. Yan, et al., "Flexible compensation of dispersion-induced power fading for multi-service RoF links based on a phase-coherent orthogonal lightwave generator," Optics letters, vol. 40, pp. 2103-2106, 2015.

[22]. J. Sun, Z. Tan, T. Li, and M. Wang, "All‐optical correlator based on modal dispersion in multimode fiber," Optical Engineering, vol. 55, p. 031119, 2015.

[21]. J. Nan, L. Tang-Jun, S. Jian, Z. Kang-Ping, and W. Mu-Guang*, "Flatness of supercontinuum generated by a picosecond pulse in normal dispersion region of highly nonlinear fiber," JOURNAL OF INFRARED AND MILLIMETER WAVES, vol. 34, pp. 196-202, 2015.

[20]. J. Sun, T.-j. Li, N. Jia, K.-p. Zhong, and W. Mu-Guang, "Experimental demonstration of 2× 80-Gbit/s OTDM multi-channel add-drop multiplexing in a single fiber," in Real-time Photonic Measurements, Data Management, and Processing, 2014, p. 927916.

[19]. J. Nan, L. Tang-Jun, S. Jian, Z. Kang-Ping, and W. Mu-Guang*, "Coherence properties of supercontinuum generated by a picosecond pulse in normal dispersion region of highly nonlinear fiber," Acta Phys. Sin., vol. 63, pp. 84203-084203, 2014.

[18]. J. Nan, L. Tang-Jun, S. Jian, Z. Kang-Ping, and W. Mu-Guang*, "Simultaneous demultiplexing into two 10 Gbit/s using a bidirectionally operated highly nonlinear fiber," Acta Phys. Sin, vol. 63, pp. 24201-024201, 2014.

[17]. H.-q. Mu, M.-g. Wang, and S.-s. Jian, "A cost-effective ultra-dense WDM PON system with speed of 12.5 Gbit/s and channel spacing of 12.5 GHz," Optoelectronics Letters, vol. 10, pp. 455-458, 2014.

[16]. Z. Jing, W. Muguang*, and S. Chenguang, "Photonic frequency-multiplying millimeter-wave generation based on dual-parallel Mach-Zehnder modulator," Acta Optica Sinica, vol. 3, pp. 71-78, 2014.

[15]. N. Jia, T. Li, J. Sun, K. Zhong, J. Li, and M. Wang*, "Simultaneous two-distributary-channel demultiplexing of an OTDM signal using a bidirectionally operated highly nonlinear fiber after 100 km transmission," Optics & Laser Technology, vol. 59, pp. 32-35, 2014.

[14]. 钟康平, 李唐军, 孙剑, 贾楠, 王目光, "基于线性相位插值的增强型载波相位估计算法," 光学学报, pp. 89-96, 2013.

[13]. K.-p. Zhong, T.-j. Li, N. Jia, J. Sun, and M. G. Wang, "An improved multiplier-free feed-forward carrier phase estimation for dual-polarization QPSK modulation format," Optoelectronics Letters, vol. 9, pp. 305-308, 2013.

[12]. K. P. Zhong, T. J. Li, S. Jian, N. Jia, and M. G. Wang, "Linewidth-Tolerant and Low Complexity Carrier Phase Estimation Based on Phase Linear Interpolation," in Asia Communications and Photonics Conference, 2013, p. AW3F. 3.

[11]. M. Wang* and J. Yao*, "Tunable 360 photonic radio-frequency phase shifter based on polarization modulation and all-optical differentiation," Journal of Lightwave Technology, vol. 31, pp. 2584-2589, 2013.

[10]. M. Wang* and J. Yao*, "Tunable optical frequency comb generation based on an optoelectronic oscillator," IEEE Photonics Technology Letters, vol. 25, pp. 2035-2038, 2013.

[9]. M. Wang* and J. Yao*, "Optical vector network analyzer based on unbalanced double-sideband modulation," IEEE Photonics Technology Letters, vol. 25, pp. 753-756, 2013.

[8]. M. Wang*, Y. Fu, C. Shao, T. Li, and S. Jian, "All-Optical Analog-to-Digital Conversion Based on Polarization Modulation and Wavelength-Dependent Birefringence," Applied Physics Express, vol. 6, p. 092201, 2013.

[7]. M. Wang*, and J. Yao*, "Multitap Microwave Photonic Filter With Negative Coefficients Based on the Inherent Birefringence in a (Formula Not Shown) Phase Modulator," IEEE PHOTONICS JOURNAL, vol. 5, pp. 5500709-5500905, 2013.

[6]. W. Liu, M. Wang, and J. Yao*, "Tunable microwave and sub-terahertz generation based on frequency quadrupling using a single polarization modulator," Journal of Lightwave Technology, vol. 31, pp. 1636-1644, 2013.

[5]. L. Gao, M. Wang, X.-f. Chen, and J. Yao, "Frequency-and phase-tunable optoelectronic oscillator," IEEE Photonics Technol. Lett, vol. 25, pp. 1011-1013, 2013.

[4]. M. Wang*, T. J. Li, S. S. Jian , “Analytical theory of pulse broadening due to polarization mode dispersion and polarization dependent loss”, Optics Communications, 223(1-3), 75-80, 2003.

[3]. M. Wang*, T. J. Li, S. S. Jian , “A novel adjustable PMD compensator based on a tapered high-birefringence linearly chirped fiber Bragg grating”, Optics Communications, 240(4-6), 307-314, 2004.

[2]. M. Wang*, T. J. Li, S. S. Jian , “Analytical theory for polarization mode dispersion of the spun and twist fiber”, Opt. Express 11(9), 2403-2410, 2003.

[1]. M. Wang*, T. J. Li, S. S. Jian, “Tunable PMD compensator based on high-birefringence linearly chirped FBG with cantilever beam”, Opt. Express, 11(9), 2354-2363, 2003.



专著/译著

光波技术基础,清华大学出版社、北京交通大学出版社 2018 (合著)

光纤通信原理,清华大学出版社、北京交通大学出版社 2015 (合著)

专利

Selected Patents

基于光电振荡器的干涉型光纤振动传感解调系统和方法

用于测量磁场的光电振荡器及其测量方法

一种用于测量湿度的光电振荡器及其测量方法

基于宽带可调谐光电振荡器的角速度测量装置和方法

基于可调谐光电振荡器的角速度测量装置

基于光电振荡器的角速度测量方法和装置

基于双驱M-Z型调制器的全光模数转换结构及实现方法

一种光时分复用器及制作方法

用于取样光纤光栅制作的振幅掩模板的制作方法

利用高双折射均匀光纤光栅补偿偏振模色散的方法和结构

一种制作大偏振模色散光纤光栅的装置

一种制作大偏振模色散非线性光纤光栅的装置

软件著作权

获奖与荣誉

詹天佑科技专项奖                2014
北京交通大学五四奖章          2014
北京高校青年英才计划          2013
教育部新世纪优秀人才计划    2010
首批红果园双百人才计划       2009
北京市科技新星                    2008

社会兼职