个人简介
刘华锋,博士,硕士生导师。2021年博士毕业于北京交通大学计算机与信息技术学院;2021年至2023年在香港大学数学系/数据科学学院从事博士后研究工作;2023年7月入职北京交通大学计算机与信息技术学院机器学习与认知计算研究所。现为CCF人工智能与模式识别专委会执行委员、北京交通大学研究生《机器学习》课程负责人,主要研究方向为机器学习、概率生成模型相关理论及其应用。主持和参与多项国家级和省部级项目,包括国家自然科学基金、北京市自然科学基金、教育部创新团队等。以第一作者或通讯作者身份分别在国际顶级学术期刊 JMLR、IEEE TKDE、IEEE TCSVT、ACM TOIS、SCIS、ACM TKDD,会议 NeurIPS、WWW、IEEE/CVF CVPR、ICCV、AAAI、ACL、ACM MM、EMNLP、ACM CIKM、ACM RecSys以及国内计算机核心期刊《中国科学》、《软件学报》上发表多篇学术论文。相关研究成果获得北京市科学技术奖自然科学奖、城市轨道交通科技进步奖、北京交通大学优秀博士学位论文,相应研究连续多年(2019/2020/2021)被评为《软件学报》高影响力论文。
主要研究内容:
-
面向大模型的可解释学习方法研究(思维链、推理模型、概念学习等)
-
面向复杂动态场景的鲁棒学习方法(深度随机过程、元学习、分布鲁棒优化)
-
面向复杂受限场景的物理信息机器学习(神经算子、神经求解器、拟问题求解等)
本人常年招收硕士研究生2-3名,2025年度还剩学硕统考名额1个,欢迎 计算机科学与技术/ 软件工程 / 数学 / 信息与计算科学 相关专业同学与我邮件联系(hfliu1@bjtu.edu.cn)!
论文/期刊
以第一作者或通讯作者身份分别在国际学术期刊与会议JMLR、IEEE TKDE、ACM TOIS、ACM TKDD、IEEE TCSVT、NeurIPS、WWW、CVPR、AAAI、ACL、ACM MM、ICCV、EMNLP、ACM CIKM、ACM RecSys以及国内计算机核心期刊《中国科学》、《软件学报》上发表多篇学术论文。(*为通讯作者)
-
Huafeng Liu, Liping Jing, Jian Yu, Michael K. Ng. Learning Hierarchical Preferences for Recommendation with Mixture Intention Neural Stochastic Processes. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2024. (CCF A).
-
Huafeng Liu, Liping Jing, Jian Yu. Neural Processes with Stability. NeurIPS, 2023. (CCF A).
-
Huafeng Liu, Mingjie Zhou, Liping Jing, Michael K. Ng. Doubly Intention Learning for Cold-start Recommendation with Uncertainty-aware Stochastic Meta Process. ACM MM, 2023. (CCF A).
-
Huafeng Liu, Liping Jing. Amortized Mixing Coupling Process for Clustering. NeurIPS, 2022: 11714-11725. (CCF A).
-
Huafeng Liu, Liping Jing, Dahai Yu, Mingjie Zhou, Michael K. Ng. Learning Intrinsic and Extrinsic Intentions for Cold-start Recommendation with Neural Stochastic Processes. ACM MM, 2022: 491-500. (CCF A).
-
Huafeng Liu, Jiaqi Wang, Liping Jing, Michael K. Ng. Deep Amortized Relational Model with Group-wise Hierarchical Generative Process. AAAI, 2022: 7550-7447. (CCF A).
-
Huafeng Liu, Jingxuan Wen, Liping Jing, Jian Yu. Leveraging Implicit Social Structures for Recommendation via Bayesian Generative Model. Science China Information Science (SCIS), 65, 148104, 2022. (CCF A).
-
Huafeng Liu, Liping Jing, Jian Yu, Michael K. Ng. Interpretable Deep Generative Recommendation Models, Journal of Machine Learning Research (JMLR), 2021. (CCF A).
-
Huafeng Liu, Liping Jing, Jian Yu, Michael K. Ng. Social Recommendation with Learning Personal and Social Latent Factors, IEEE Transactions on Knowledge and Data Engineering (TKDE), vol. 33, no. 7, 2956-2970, 2021. (CCF A).
-
Huafeng Liu, Jiaqi Wang, Liping Jing. Cluster-wise Hierarchical Generative Model for Deep Amortized Clustering. IEEE/CVF CVPR, 2021: 15109-15118. (CCF A).
-
Huafeng Liu, Liping Jing, Jingxuan Wen, Pengyu Xu, Jian Yu, Michael K. Ng. Bayesian Additive Matrix Approximation for Social Recommendation. ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 16, no. 1, Article 7, 2021. (CCF B).
-
Huafeng Liu, Jingxuan Wen, Zhicheng Wu, Jiaqi Wang, Liping Jing, Jian Yu. Deep Global and Local Generative Model for Recommendation. TheWebConf (WWW), 2020: 551–561. (CCF A).
-
Huafeng Liu, Liping Jing, Yuhua Qian, Jian Yu. Adaptive Local Low-rank Matrix Approximation for Recommendation. ACM Transactions on Information Systems (TOIS), vol. 37, no. 4, Article 45, October 2019. (CCF A).
-
Huafeng Liu, Jingxuan Wen, Liping Jing, Jian Yu. Deep Generative Ranking for Personalized Recommendation. ACM RecSys, 2019, 34–42. (CCF B).
-
Huafeng Liu, Jingxuan Wen, Liping Jing, Jian Yu, Xiangliang Zhang, Min Zhang. In2Rec: Influence-based Interpretable Recommendation. ACM CIKM, 2019, 1803-1812. (CCF B).
-
Huafeng Liu, Liping Jing, and Miaomiao Cheng. An Efficient Parallel Trust-based Recommendation Method on Multicores, SC workshop on HPGDMP, 2016, 9–16. (CCF A workshop).
-
Jiaqi Wang, Pichao Wang, Yi Feng, Huafeng Liu*, Chang Gao, Liping Jing. Align2Concept: Language Guided Interpretable Image Recognition by Visual Prototype and Textual Concept Alignment. ACM MM 2024. (CCF A)
-
Jingxuan Wen, Huafeng Liu*, Liping Jing*, Jian Yu. Learning-based Counterfactual Explanations for Recommendation. Science China Information Science (SCIS), 2024 (CCF A).
-
Xiang Wang, Liping Jing, Huafeng Liu*, Jian Yu, Weifeng Geng, Gengcheng Ye, Deep Fair Clustering with Multi-level Decorrelation, Information Science (IS), 2024 (CCF B, 一区).
-
Xiang Wang, Huafeng Liu*, Liping Jing*, Jian Yu. Structure-driven Representation Learning for Deep Clustering. ACM Transactions on Knowledge Discovery from Data (TKDD). 2023 (CCF B).
-
Jiaqi Wang, Huafeng Liu*, Liping Jing*, Transparent Embedding Space for Interpretable Image Recognition. IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), 2023. (CCF B).
-
Mingyang Song, Huafeng Liu*, Liping Jing*. Improving Embedding-based Unsupervised Keyphrase Extraction by Incorporating Structural Information. ACL, 2023. (CCF A).
-
Mingyang Song, Huafeng Liu*, Liping Jing*. Calibrating Over-Generation for Unsupervised Keyphrase Extraction with Heterogeneous Centrality Detection. EMNLP, 2023. (CCF B).
-
Mingyang Song, Huafeng Liu*, Liping Jing*. HyperRank: Hyperbolic Ranking Model for Unsupervised Keyphrase Extraction. EMNLP, 2023 (CCF B).
-
Jingxuan Wen, Huafeng Liu*, Liping Jing*. Modeling Preference as Weighted Distribution over Functions for User Cold-start Recommendation. ACM CIKM, 2023. (CCF B)
-
Mingyang Song, Huafeng Liu*, Liping Jing*. Improving Diversity in Unsupervised Keyphrase Extraction with Determinantal Point Process. ACM CIKM, 2023. (CCF B).
-
Jiaqi wang, Huafeng Liu*, Xinyue Wang, Liping Jing*. Interpretable Image Recognition by Constructing Transparent Embedding Space, ICCV, 2021, 895-904. (CCF A).
-
刘华锋, 景丽萍, 于剑. 融合社交信息的矩阵分解推荐方法研究综述. 软件学报, 2018,29(2):340-362. (CCF A(中文)).
-
刘华锋,景丽萍,面向个性化推荐的偏好多样性建模研究进展,中国人工智能学会通讯,特约稿件, 2020, 第2期.
其余论文成果
-
Lin Xiao, Pengyu Xu, Mingyang Song, Huafeng Liu, Liping Jing, Xiangliang Zhang. Triple Alliance Prototype Orthotist Network for Long-Tailed Multi-Label Text Classification. IEEE/ACM Transactions on Audio, Speech, and Language Processing (TASLP), 2023. (CCF B).
-
Pengyu Xu, Mingxuan Xia, Lin Xiao, Huafeng Liu, Bin Liu, Liping Jing. Jian Yu. Textual Tag Recommendation with Multi-tag Topical Attention. Neurocomputing, 2023, 537: 73-84. (CCF C).
-
Xinyue Wang, Liping Jing, Yilin Lyu, Mingzhe Guo, Jiaqi Wang, Huafeng Liu, Jian Yu, Tieyong Zeng. Deep Generative Mixture Model for Robust Imbalance Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022, vol. 45, no. 3, 2022 (CCF A).
-
Xiaoyi Sun, Huafeng Liu, Liping Jing, Jian Yu. Deep Generative Recommendation Model with Learning to Maximize Reciprocal Rank. KSEM, 2020: 123-130. (CCF C).
-
Zhicheng Wu, Huafeng Liu, Yanyan Xu, Liping Jing. Collaboration Matrix Factorization on Rate and Review for Recommendation. Journal of Database Management (JDM), 2019 Volume 30, Issue 2. (SCI).
-
Xingxing Li, Liping Jing, Huafeng Liu. Adaptive Ensemble Probabilistic Matrix Approximation for Recommendation. PRCV, 2018: 328-339.
-
Xixi Du, Huafeng Liu, Liping Jing, Additive Co-clustering with Social Influence for Recommendation, ACM RecSys, 2017: 193-200. (CCF B)
-
郝敬宇, 文静轩, 刘华锋, 景丽萍, 于剑. 结合全局信息的深度图解耦协同过滤. 计算机科学, 2023, 50(1): 41-51. (CCF B(中文)).
-
徐鹏宇, 刘华锋, 刘冰, 景丽萍, 于剑. 标签推荐方法研究综述. 软件学报, 2022, 33(4): 1244-1266. (CCF A(中文)).
-
肖琳, 陈博理, 黄鑫, 刘华锋, 景丽萍, 于剑. 基于标签语义注意力的多标签文本分类. 软件学报, 2020, 31(4): 1079-1089. (CCF A(中文)).
-
孙肖依, 刘华锋, 景丽萍, 于剑. 基于列表级排序的深度生成推荐方法. 计算机研究与发展, 2020, 7(8): 1697-1706. (CCF A(中文)).
-
景丽萍, 刘华锋. 面向个性化推荐的偏好多样性建模研究进展. 中国人工智能学会通讯, 2020, 第2期. (特邀稿件)
-
李幸幸, 刘华锋, 景丽萍. 混合秩矩阵分解模型. 计算机科学与探索, 2019, 13(7): 1114-1122. (CCF B(中文)).
-
读习习, 刘华锋, 景丽萍. 一种融合社交网络的叠加联合聚类推荐模型. 山东大学学报(工学版), 2018, 48(03): 100-106.
博士学位论文
-
刘华锋. 概率生成式用户偏好模式挖掘方法研究,北京交通大学, 2021.03.